“'P TEXASs
INSTRUMENTS

TMS34010

User's Guide

1988 Graphics Products

TMS34010 User’s Guide

*p

TeExas
INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T1) reserves the right to make changes to or to discontinue
any semiconductor product or service identified in this publication without
notice. Tl advises its customers to obtain the latest version of the relevant in-
formation to verify, before placing orders, that the information being relied
upon is current.

T! warrants performance of its semiconductor products to current specifica-
tions in accordance with Tl’s standard warranty. Testing and other quality
control techniques are utilized to the extent Tl deems necessary to support this
warranty. Unless mandated by government requirements, specific testing of
all parameters of each device is not necessarily performed.

Tl assumes no liability for TI applications assistance, customer product design,
software performance, or infringement of patents or services described herein.
Nor does Tl warrant or represent that license, either express or implied, is
granted under any patent right, copyright, mask work right, or other intellec-
tual property right of Tl covering or relating to any combination, machine, or
process in which such semiconductor products or services might be or are
used.

Copyright © 1988, Texas Instruments Incorporated

Contents

Section

1 Introduction

1.1 TMS34010 Overview e
1.2 KeyFeatures
1.3 Architectural Overview Lo
1.31 TMS34010 Block Diagram
1.3.2 Other Special Processing Hardware
1.4 Typical Applications
1.5 Manual Organization
1.6 Related Documentation, References, and Suggested Reading
2 Pin Functions

2.1 Pinout and Pin Descriptions,
2.2 Hostlinterface Bus Signals,
2.3 Local Memory Interface Signals
2.4 Video Timing Signals L L o
25 Hold and Emulator Interface Signals
2.6 Power, Ground, and Reset Signals
3 Memory Organization

3.1 Memory Addressing e
32 MemoryMap
3.3 Stacks e e
3.31 System Stack
3.3.2 Auxiliary Stacks Lo
4 Hardware-Supported Data Structures

41 Fields e e e e e
4.2 Pixels e e
421 Pixelsin Memory Lo
4.2.2 PixelsontheScreen L.
423 Display Pitch
43 XY Addressing e e
4.3.1 XY-to-Linear Conversion
4.4 Pixel Arrays e e e e
5 CPU Registers and Instruction Cache

5.1 General-Purpose Registers
5.1.1 Register File A o
5.1.2 Register File B
5.1.3 Stack Pointer L
51.4 Implied Graphics Operands
5.2 Status Register
6.3 Program Counter
5.4 InstructionCache
5.4.1 Cache Hardware
5.4.2 Cache Replacement Algorithm
5.4.3 Cache Operation i i i i it ittt e

[G S YIS N QU NN W N Y
U
S OONOITAWN=

—_

MMI\JI}JNNM
LD AONOIN =
- O

(A)(A)(I'waw
COODN=

5.44 Self-Modifying Code 5-23
5.45 Flushingthe Cache 5-23
54.6 CacheDisable 5-24
5.4.7 Performance with Cache Enabled versus Cache Disabled 5-24
5.5 Internal Parallelism 5-25
6 I/0 Registers 6-1
6.1 I/O Register Addressing 6-2
6.2 Latency of Writesto I/O Registers 6-4
6.3 I/ORegisters Summary e 6-5
6.3.1 Host Interface Registers 6-7
6.3.2 Local Memory Interface Registers 6-8
6.3.3 Interrupt Interface Registers 6-8
6.3.4 Video Timing and Screen Refresh Registers 6-9
6.4 Alphabetical Listing of I/O Registers 6-10
7 Graphics Operations 7-1
7.1 Graphics Operations Overview 7-2
7.2 Pixel Block Transfers 7-4
7.2.1 Color-Expand Operation 7-5
7.2.2 Starting Corner Selection, 7-7
7.2.3 Interrupting PixBltsand Fills 7-8
7.3 Pixel Transfers 7-10
7.4 Incremental Algorithm Supporto Lo 7-10
7.5 Transpare€ncCy u e e e e e e e e 7-11
76 PlaneMasking 7-12
7.7 Pixel Processing e e 7-15
7.8 Boolean Processing Examples 0oL 7-17
7.8.1 Replace Destination with Source 7-18
7.8.2 Logical OR of Source with Destination 7-18
7.8.3 Logical AND of NOT Source with Destination 7-18
7.8.4 Exclusive OR of Source with Destination 7-18
7.9 Multiple-Bit Pixel Operations 7-19
7.91 Examples of Boolean and Arithmetic Operations 7-19
7.9.2 Operations on Pixel Intensity 7-22
710 Window Checking 7-25
7101 W=1 Mode - Window Hit Detection 7-26
7.10.2 W=2 Mode - Window Miss Detection -7-27
7.10.3 W=3 Mode - Window Clipping 7-27
7.10.4 Specifying Window Limits 7-28
7.10.5 Window Violation Interrupt L. 7-29
7106 LineClipping 7-29
8 Interrupts, Traps, and Reset 8-1
8.1 Interrupt Priorities and Vector Addresses 8-2
8.2 Interrupt Interface Registerso 8-3
8.3 ExternalInterrupts e 8-3
8.4 Internal Interrupts e e 8-5
8.5 Interrupt Processing e 8-6
8.5.1 Interrupt Latency e 8-7
86 Traps 8-9
8.7 lllegal Opcode Interrupts Lo 8-9
88 Reset 8-10
8.8.1 Asserting Reset 8-10
8.8.2 Suspension of DRAM-Refresh Cycles During Reset 8-11

8.8.3 State of VCLK During Reset 8-11
8.8.4 Initial State Following Reset 8-11
8.8.6 Activity Following Reset e 8-12

Screen Refresh and Video Timing 9-1
Screen Sizes L 9-2
Video Timing Signals 9-3
Video Timing Registers 9-4
Relationship Between Horizontal and Vertical Timing Signals 9-5
Horizontal Video Timing 9-6
Vertical Video Timing, 9-8

POOOEOOOOOOOOWOWO®
A2 OOONNOOORPRWN=-

A Noninterlaced Video Timing 9-9
Display Interrupt 9-13
DotRate 9-14
External Sync Mode 9-15

A ATwo-GSP System '., 9-15

2 External Interlaced Video 9-17

0 Video RAM Control 9-18

1041 Screen Refresh 9-18

.10.2 Video Memory Bulk Initialization 9-26

10 Host interface Bus 10-1
10.1 Hostinterface Bus Pins 10-2
10.2 Host Interface Registers, 10-2
10.3 Host Register Reads and Writes 10-4
10.3.1 Functional Timing Examples 10-5
10.3.2 Ready SignaltoHost 10-8
10.3.3 Indirect Accesses of Local Memory 10-11
10.3.4 Haltlatency 10-19
10.3.6 Accommodating Host Byte-Addressing Conventions 10-20
10.4 Bandwidth 10-22
105 Worst-Case Delay 10-23
1 Local Memory Interface 11-1
11.1 Local Memory Interface Pins 11-2
11.2 Local Memory Interface Registers 11-3
11.3 Memory Bus Request Priorities 11-4
11.4 Local Memory Interface Timing 11-5
11.4.1 Local Memory Write Cycle Timing 11-7
11.4.2 Local Memory Read Cycle Timing 11-8
11.43 Local Register-to-Memory Cycle Timing 11-9
11.4.4 Local Memory-to-Register Cycle Timing 11-10
1145 Local Memory RAS-Only DRAM Refresh Cycle Timing 11-11
11.46 Local Memory CAS-before-RAS DRAM Refresh Cycle Timing 11-12
11.4.7 Local Memory Internal Cycles 11-13
11.4.8 1/O Register Access Cycles 11-13
11.49 Read-Modify-Write Operations 11-156
11.410 Local Memory WaitStates 11-16
11.411 Hold Interface Timing 11-18
11.4.12 Local Bus Timing Following Reset 11-22
11.5 Addressing Mechanisms 11-23
11.5.1 Display Memory Hardware Requirements 11-24
11.6.2 Memory Organization and Bank Selecting 11-25
11.6.3 Dynamic RAM Refresh Addresses 11-25
11.5.4 An Example - Memory Organization and Decoding 11-28

12 TMS34010 Instruction Set 12-1
121 Style and Symbol Conventions L. 12-2
12.2 Addressing Modes and Operand Formats 12-4
12.2.1 Immediate Values and Constants 12-4
12.2.2 Absolute Addresses e e 12-5
12.2.3 Register-Direct Operands 12-6
12.2.4 Register-Indirect Operands 12-7
12.2.5 Register-Indirect with Offset 12-8
12.2.6 Register-Indirect with Postincrement 12-9
12.2.7 Register-Indirect with Predecrement 12-10
12.2.8 Register-Indirectin XY Mode o0 12-11
12.3 Instruction Set Summary Table 12-12
12.4 Arithmetic, Logical, and Compare Instructions 12-19
12.5 Move Instructions Summaryo 12-20
12.56.1 Register-to-Register Moves 12-20
12.6.2 Value-to-Register Moves 12-20
125.3 XY Moves e 12-20
12.5.4 Multiple-Register Moves Lo L 12-21
1255 ByteMoves e e 12-21
126.6 FieldMoves 12-22
12.6 Graphics Instructions Summary L0 e e e e 12-26
12.6.1 Comparing a PointtoaWindow 12-26
12.6.2 Converting an XY Address to a Linear Address 12-26
12.6.3 Drawing a Pixel and Advancing to the Next Pixel Address 12-26
126.4 Drawaline 12-26
12.6.5 FillingaPixel Block, 12-26
12.6.6 MovingaSinglePixel 0., 12-27
12.6.7 Moving a Two-Dimensional Block of Pixels 12-27
12.6.8 ImpliedOperands 12-28
12.7 Program Control and Context Switching Instructions 12-29
12.7.1 Subroutine Callsand Returns 12-29
12.7.2 Interrupt Handling 12-29
12.7.3 Setting, Saving, and Restoring Status information 12-29
12.7.4 Jump Instructions L. e 12-30
12.8 Shiftinstructions e 12-32
129 XYlnstructions L 12-33
12.10 Alphabetical Reference of Instructions 12-34
13 Instruction Timings 13-1
13.1 General Instructions 13-2
13.1.1 Best Case Timing — Considering Hidden States 13-2
13.1.2 Other Effects on Instruction Timing 13-3
13.2 MOVE and MOVB Instructions 13-4
13.21 Moves Between Registers and Memory 13-5
13.2.2 Memory-to-Memory Moveso 13-6
13.2.3 MOVE T Timing Example, 13-8
13.3 FlLLinstructions e 13-10
13.31 FILLSetup Time e e e i e e e e 13-10
13.3.2 FiLL Transfer Timing 13-11
13.3.3 FILLTiming Examples 13-14
13.3.4 Interrupt Effectson FILLTiming 13-17
13.4 PIXBLT Instructions i i it e e e 13-18
13.41 PIXBLT Setup Time it 13-18
13.4.2 PIXBLT Transfer Timing 13-20

vi

13.4.3 PIXBLT Timing Examples 13-26

13.4.4 The Effect of Interrupts on PIXBLT Instructions 13-30
13.5 PIXBLT Expand Instructions 13-31
13.5.1 PIXBLT Setup Time 13-31
13.6.2 PIXBLT Transfer Timing 13-32
13.6.3 PIXBLT Timing Examples 13-37
13.6.4 The Effectof Interrupts 13-40

A TMS34010 Data Sheet

B System Design Considerations

(o4 Software Compatibility with Future GSPs
D Glossary

vii

R I R I
N-=O

R R I R I AR
N=2O

illustrations

Figure Page
System Block Diagram e 1-4
Internal Architecture Block Diagram0 ... 1-5
TMS34010 Pinout (Top View) it 2-2
TMS34010 Major Interfaces 2-3
Logical Memory Address Space i 3-2
Physical Memory Addressing i 3-3
TMS34010 Memory Map i e 3-4
System Stack 3-7
Stack Operationst e e 3-8
An Auxiliary Stack that Grows Toward Lower Addresses 3-10
An Auxiliary Stack that Grows Toward Higher Addresses 3-11
Field Storage in External Memory 4-2
Field Alignment in Memory 4-3
Field Insertion 4-5
Pixel Storage in External Memory, 4-7
Mapping of Pixels to Monitor Screen 4-7
Configurable Screen Origin 4-8
Display Memory Dimensions 4-9
Display Memory Coordinates i .. 4-9
Pixel Addressing in Terms of XY Coordinates 4-11
Concatenation of XY Coordinates in Address 4-12
Conversion from XY. Coordinates to Memory Address 4-13
PiXel AITaY .. e e 415
Register File A e 5-2
Register File B e 5-3
Stack Pointer Register 5-4
Status Register e 5-18
Program Counter e 5-19
TMS34010 Instruction Cache 5-20
Segment Start Address ' e 5-21
Internal Data Paths e 5-25
Parallel Operation of Cache, Execution Unit, and Memory Interface 5-26
1/0 Register Memory Map i 6-2
Correlation Between SRFADR and Logical Address Bits 6-18
Correlation Between DPYADR Bits and Row/Column Addresses 6-18
Color-Expand Operation t 7-6
Starting Corner Selection 7-7
TransSPareNCy ...ttt et e 7-11
Read Cycle With Plane Masking 7-13
Write Cycle With Transparency and Plane Masking 7-14
Graphics Operations Interactionccciueon... 7-16
Examples of Operations on Single-Bit Pixels 7-17
Examples of Boolean and Arithmetic Operations 7-19
Examples of Operations on Pixel Intensity 7-22
Specifying Window Limits 7-28
Outcodes for Line Endpoints i 7-30
Midpoint Subdivision Method 7-31
Vector Address Mapot e 8-2
Horizontal and Vertical Timing Relationship 9-5

(DU)\I\l\l\l\l\l\l\l\l\I\I\IO’)G)O)O'IO'IU'IO'IO'IO'IU'I(IJ'IU'Ihbbhhb&hbb&#wwwwwwwNN—‘—‘
DA A2 OONOAOPWN_2CWON_LP,O0NOOIAWN=SR A 200N RWON_2ANdOOIRWON=_N-2AN=

viii

1
PR OONOORWN

COANPNPWNDRWN 2O

—‘—‘-—‘-—‘—‘-—‘—‘(D(O(O(Df.‘O(O(D(D(DCO(D‘DCD

—)

10-10
10-11
10-12
10-13
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9

Horizontal Timing

Horizontal Timing Logic - Equivalent Circuit 9-7
Example of Horizontal Signal Generation 9-7
Vertical Timing for Noninterlaced Display 9-8
Vertical Timing Logic — Equivalent Circuit 9-9
Electron Beam Pattern for Noninterlaced Video 9-9
Noninterlaced Video Timing Waveform Example 9-10
Electron Beam Pattern for Interlaced Video 9-11
Interlaced Video Timing Waveform Example 9-12
External Sync Timing-Two GSP Chips 9-16
Screen-Refresh Address Registers i iuunn.. 9-19
Logical Pixel Address i 9-21
Screen-Refresh Address Generation 9-22
Equivalent Circuit of Host Interface Control Signals 10-4
Host 8-Bit Write with HCS Used as Strobe 10-5
Host 8-Bit Read with HCS Used as Strobe 10-6
Host 16-Bit Read with HREAD Used as Strobe 10-6
Host 16-Bit Write with HWRITE Used as Strobe 10-7
Host 16-Bit Write with HLCDS, HUDS Used as Strobes 10-7
Host 16-Bit Read with HLDS, HUDS Used as Strobes 10-8
Host Interface Timing - Write Cycle With Wait 10-10
Host Interface Timing — Read Cycle With Wait 10-10
Host Indirect Read from Local Memory (INCR=1) 10-13
Host Indirect Write to Local Memory (INCW=1) 10-15
Indirect Write Followed by Two Indirect Reads (INCW=1, INCR=0) 10-16
Calculation of Worst-Case Host Interface Delay 10-23
Triple Multiplexing of Addresses and Data 11-5
Row and Column Address Phases of Memory Cycle 11-6
Local Bus Write Cycle Timing 11-7
Local Bus Read Cycle Timing 11-8
Local Bus Register-to-Memory Cycle Timing 11-9
Local Bus Memory-to-Register Cycle Timing 11-10
Local Bus RAS-Only DRAM-Refresh Cycle Timing 11-11
Local Bus CAS-before-RAS DRAM-Refresh Cycle Timing 11-12
Local Bus Internal Cycles Backto Back 11-13
I/0 Register Read Cycle Timing i 11-14
I/0 Register Write Cycle Timing i, 11-15
Local Bus Read Cycle with One Wait State 11-16
Local Bus Write Cycle with One Wait State 11-17
Local Bus Register-to-Memory Cycle with One Wait State 11-18
TMS34010 Releases Control of Local Bus 11-19
TMS34010 Resumes Control of Local Bus 11-21
Local Bus Timing Following Reset ciiiunn.. 11-22
External Address Format 11-23
Row Address for DRAM-Refresh Cycle 11-27
Address Decode for Example System, 11-28
Display Memory Dimensions for the Example 11-29
An Example of Immediate Addressing 12-4
An Example of Absolute Addressing 12-5
An Example of Register-Direct Addressing 12-6
An Example of Register-Indirect Addressing 12-7
An Example of Register-Indirect with Offset Addressing 12-8
An Example of Register-Indirect with Postincrement Addressing 12-9
An Example of Register-Indirect with Predecrement Addressing 12-10
Register-to-Memory MoveS 12-23
Memory-to-Register Moves 12-24

12-10 Memory-to-Memory Moves i i 12-25

12-11 Implied Operand Setup for LINE Timing Example 12-10
12-12 LINE Timing Example i e it e 12-10
12-13 LINE Exampleso e e e e e 12-10
13-1 Field Alignments in Memoryc. it 13-4
13-2 Source Data, Alignment G e 13-8
13-3 Destination Location, AlignmentE 13-8
13-4 Pixel Block Alignment in X e 13-11
13-5 Pixel Block Alignments e 13-12
13-6 Implied Operand Setup for FILL Exampie 13-14
13-7 FILL XY Timing Example e e e i 13-15
13-8 Pixel Block Alignmentin X 13-21
13-9 Pixel Block Alignmentsttt i 13-22
13-10 Source to Destination Alignmentst eeennns 13-23
13-11 Implied Operand Setup for PIXBLT Timing Examples 13-26
13-12 PIXBLT XY,L Timing Example i 13-27
13-13 Pixel Block Alignment in X i, 13-33
13-14 Pixel Block Row Alignments 13-34
13-15 Implied Operand Setup for PIXBLT-Expand Examples 13-37
13-16 PIXBLT B, XY Timing Example 13-38
Tables

Table Page
1-1 Typical Applications of the TMS34010 1-8
2-1 Pin DesCriptions e e e e e e 2-3
2-2 Hostlinterface Signals e e 2-5
2-3 Local BusInterface Signals 2-7
2-4 Video Timing Signals it i i e e 2-9
2-5 Hold and Emulator Interface Signals 2-10
2-6 Power, Ground, and Reset Signals 2-11
5-1 B-File Registers Summary e 5-5
5-2 Definition of Bits in Status Register 5-18
5-3 Decoding of Field-Size Bits in Status Register 5-19
5-4 Instruction Effectsonthe PC 5-19
6-1 1/0 Registers SUmMmMary i e 6-5
7-1 Boolean Pixel Processing Optionst 7-15
7-2 Arithmetic (or Color) Pixel Processing Options 7-15
8-1 Interrupt Priorities e e e e 8-2
8-2 External Interrupt VeCtOrst e e 8-4
8-3 Interrupts Associated with Internal Events 8-5
8-4 Six Sources of Interrupt Delay i 8-8
8-5 Sample Instruction Completion Timescviuuuei... 8-8
8-6 lllegal Opcodes Rangesouiiiinimnmniiennnneennn. 8-9
8-7 Stateof PinsDuringaReset it iiiuiiennn.. 8-11
9-1 Programming GSP #2 For External Sync Mode 9-16
9-2 Screen-Refresh Latency it 9-25
10-1 Host Interface Register Selection 10-2
10-2 Five Sourcesof HaltDelay i, 10-20
10-3 Sample Instruction Completion Times, 10-20
10-4 Host Interface Estimated Bandwidth 10-22
11-1 Priorities for Memory Cycle Requests 11-4

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
B-1

Instruction Set Symbol and Abbreviation Definitions 12-2
Summary of Move Instructions i 12-20
Summary of Operand Formats for the MOVB Instruction 12-21
Summary of Operand Formats for the MOVE Instruction 12-22
Summary of Operand Formats for the PIXT Instruction 12-27
Summary of Array Types for the PIXBLT Instruction 12-27
Implied Operands Used by Graphics Instructions 12-28
Condition Codes for JRec and JAcc Instructions 12-31
Summary of XY Instructions 12-33
LINE Transfer Timing i e e e e eaes 12-10
Per-Word Timing Values for Pixel Processing (P) 12-10
MOVE and MOVB Memory-to-Register Timings 13-5
MOVE and MOVB Register-to-Memory Timings 13-6
Alignment Indices for Memory-to-Memory Moves 13-6
MOVE Memory-to-Memory Timings 13-7
FILL Setup Time ... oo i e e et ettt e e et anes 13-10
FILL Transfer TImingttt e e e 13-11
Timing Values per Word for Graphics Operations (G) 13-13
PIXBLT Setup Time i 13-18
PIXBLT Transfer Timingottt e 13-20
Timing Values per Word for Graphics Operations (G) 13-24
PIXBLT Expand Setup Time e 13-32
PIXBLT Expand Transfer Timing0t iiiennnnn 13-32
Timing Values per Word for Graphics Operations (G) 13-36
Loading e e e B-2

Xi

Xii

Section 1

Introduction

The TMS34010 Graphics System Processor (GSP) is an advanced 32-bit
microprocessor, optimized for graphics systems. The TMS34010 is a member
of the TMS340 family of computer graphics products from Texas Instruments.

A single TMS34010 provides a cost-effective solution in applications that re-

quire efficient data manipulation. The TMS34010 can be configured to serve

in either a host-based or a stand-alone environment. Systems based on mul-

tiple TMS34010 devices are implemented using special features of the l

TMS34010’s local and host interfaces.]
|
|
|

The TMS34010 is well supported by a full set of hardware and software de-
velopment tools, including a full-speed emulator, a software simulator, an
IBM-PC development board, a C compiler, predeveloped software libraries,
and assembly language tools.

Topics covered in this introductory section include:

Section
1.1 TMS3B40T0 OVEIVIEW ...ooviiiiiiiririei ettt ettt ae e aiens
Key FEALUIEScccooiiiciiee ettt et ae e

Architectural OVEIVIEWccccireciiiinenr e

Typical Applications
Manual Organization
Related Documentation, References, and Suggested Reading 1-11

—) A
ounprwiy

Introduction - TMS34010 Overview

1.1 TMS34010 Overview

1-2

The TMS34010 combines the best features of general-purpose processors and
graphics controllers to create a powerful and flexible Graphics System Pro-
cessor. Key features of the TMS34010 are its speed, high degree of pro-
grammability, and efficient manipulation of hardware-supported data types
such as pixels and two-dimensional pixel arrays.

The TMS34010’s unique memory interface reduces the time needed to per-
form tasks such as bit alignment and masking. The 32-bit architecture sup-
plies the large blocks of continuously-addressable memory that are necessary
in graphics applications. TMS34010 system designs can take advantage of
video RAM (such as the TMS4461) technology to facilitate applications such
as high-bandwidth frame buffers; this circumvents the bottleneck often en-
countered when using conventional DRAMs in graphics systems.

The TMS34010 instruction set includes a full complement of general-purpose
instructions, as well as graphics functions, from which you can construct ef-
ficient high-level functions. The instructions support arithmetic and Boolean
operations, data moves, conditional jumps, and subroutine calls and returns.

The TMS34010 architecture supports a variety of pixel sizes, frame buffer
sizes, and screen sizes. On-chip functions have been carefully selected so that
no functions tie the TMS34010 to a particular display resolution. This en-
hances the portability of graphics software, and allows the TMS34010 to
adapt to graphics standards such as MIT's X, CGI/CGM, GKS, NAPLPS,
PHIGS, and evolving industry and display management standards.

Introduction - Key Features

1.2 Key Features
[] Fully programmable 32-bit general-purpose processor
® 128-megabyte address range

® Instruction cycle times:

- 132 ns (TMS34010-60)
- 160 ns (TMS34010-50)
- 200 ns {TMS34010-40)

() On-chip peripheral functions include:

- Programmable CRT control (horizontal sync, vertical sync, and
blanking)

- Direct interfacing to conventional DRAMs and multiport video
RAMs

— Automatic CRT display refresh

- Direct communications with an external (host) processor

[Instruction set includes special graphics functions such as pixel
processing, XY addressing, and window clip/hit

] Programmable 1, 2, 4, 8, or 16-bit pixel size with 16 Boolean and
6 arithmetic pixel-processing options

® 30 general-purpose 32-bit registers
® 256-byte on-chip instruction cache
o Dedicated 8/16-bit host-processor interface and HOLD/HLDA interface
® 32-bit and 64-bit integer arithmetic
° High-level language support
[) Full line of hardware and software development tools including:
- C compiler
- Macro assembler
- Linker
- Archiver

- Software application libraries

- XDS (Extended Development Support) in-circuit emulator
- Software development board (SDB)

- ROM utility

— Simulator

— Symbolic debugger

® 68-pin PLCC package
® 5-V CMOS technology

1-3

Introduction - Architectural Overview

1.3 Architectural Overview

1-4

Figure 1-1 illustrates the TMS34010’s major internal functions and its inter-
faces to external devices. The on-chip processor executes both graphics in-
structions and general-purpose instructions. The TMS34010 is a true 32-bit
processor, with 32-bit internal data paths, a 32-bit ALU, and a large address
space. Thirty 32-bit general-purpose registers, a 32-bit stack pointer, and a
256-byte instruction cache increase performance. Nonprocessor functions
included on the chip include CRT timing, screen refresh, and DRAM refresh.
Separate physical interfaces are provided for communicating with a host pro-
cessor, for providing the video timing signals necessary to control a CRT
monitor, and for connecting directly to dynamic RAMs (like the TMS4256 or
TMS4C1024) and video RAMs (such as the TMS4461).

Graphics System Processor Chip Boundary

|
|
Host-Graphics Graphics | Conventional
interface Processor | DRAMs
|
| | —
Il Program and
| Data Storage
|

Frame Buffer

Figure 1-1. System Block Diagram

Introduction - Architectural Overview

1.3.1 TMS34010 Block Diagram

Figure 1-2 illustrates the internal architecture of the TMS34010; the following
subsections describe the individual blocks shown in Figure 1-2.

External = - Instruotion
“ Interrupt Decode

o,

Program
Counter

Video Timing
Registers

%

Microcontrol

ALU ROM

Barrel Shifter

Register File A
Register Flle B
Stack Pointer

I e ———

Local Memory
Control
Registers

1
|
|
Status Register IIO——
|
|
|
|
|
|
[PU—

_____ Execution Unit o
ook
Looal Memory internal Clock fT— Outputs
and Buffers Clrouttry Ciock
iInputs
e e e e

Local Memory
Interface Bus

Figure 1-2. Internal Architecture Block Diagram

1.3.1.1 CPU Internal Functions

The center portion of Figure 1-2 highlights the main internal functions of the
TMS34010:

® The 32-bit program counter (PC) points to the next instruction word
to be fetched. The PC’s four LSBs are always 0. Section 5.3 (page
5-18) discusses the program counter.

° The 32-bit status register (ST) specifies the status of the TMS34010
processor. [t contains the sign, carry, zero, overfiow, interrupt enable,
and PixBIt execution status bits. It also specifies the lengths and field
extension modes of fields 0 and 1. Section 5.2 (page 5-17) discusses
the status register.

1-5

Introduction - Architectural Overview

Register files A and B each contain 15 general-purpose registers,

A0-A14 and BO-B14, respectively. The B-file registers are also used as
implied operands for the graphics instructions. Section 5.1 (page 5-2)
discusses the register files.

The general-purpose register files are dual ported to support parallel data
movement. Two separate internal buses route data from the registers to
the ALU, and a third bus routes results back to the registers.

The stack pointer, or SP, is available to instructions that operate on
either register file.

The 32-bit barrel shifter shifts or rotates 32-bit operands from 1 to
32 bit positions in a single machine state.

The 32-bit ALU is connected to the other CPU components by 32-bit
data paths. This aliows most register-to-register operations to be per-
formed in a single machine state. (Accessing external memory requires
a minimum of two states.) The following actions occur in parallel during
a single state:

1) Two operands are transferred from the selected general-purpose
register file to the ALU.

2) The ALU performs the specified operation on the operands.

3) The result is routed back to the general-purpose register file.

1.3.1.2 Instruction Cache

The TMS34010 contains a 256-byte instruction cache that can contain up to
128 instruction words (an instruction word may be an entire single-word in-
struction or 16 bits of a multiple-word instruction). Section 5.4 (page 5-19)
describes instruction cache operation.

1.3.1.3 1/0 Registers

Twenty-eight 16-bit, on-chip 1/0 registers are dedicated to peripheral control
functions. The I/0 registers are divided into four categories:

1-6

Seven local memory interface registers are dedicated to memory
interface control and configure the memory controller.

Fourteen video timing and screen refresh registers generate the
sync and blanking signals used to drive a CRT, and schedule screen-
refresh cycles.)

Five host interface registers are accessible to external host process-
ors as well as to the TMS34010. Status information can be communi-
cated directly through these registers. Large blocks of data in
TMS34010 memory can be accessed indirectly through pointer registers.

Two interrupt control registers provide status information about
interrupt requests.

Section 6 provides individual descriptions of each /0O register.

Introduction - Architectural Overview

1.3.1.4 Microcontrol ROM

The TMS34010 transfers decoded instructions to the microcontrol ROM for
interpretation. The microcontrol ROM has 166 control outputs and 808 mic-
rostates.

1.3.1.5 Clock Timing Logic

The clock timing logic converts the clock input signals to internal timing sig-
nals and generates the clock output signals, LCLK1 and LCLK2, used by ex-
ternal devices. The machine state is a fundamental time unit of the graphics
processor in the TMS34010; it is the time interval during which the processor
is in a particular microinstruction state. The instruction timing for each as-
sembly language instruction is specified in multiples of machine states. The
TMS34010’s machine state is a single local clock period (the time from one
LCLK? low-to-high transition to the next) in duration.

1.3.2 Other Special Processing Hardware

The TMS34010 CPU also supports the following special processing functions
in hardware:

L] Detecting whether a pixel lies within a specified display window
[) Detecting the leftmost one in a 32-bit register
® Expanding a black-and-white pattern to a variable pixel-depth pattern

1-7

Introduction - Typical Applications

1.4 Typical Applications

The TMS34010°s 32-bit processing power and its ability to handle complex
data structures make it well suited for a variety of applications. These include
display systems, imaging systems, mass storage, communications, high-speed
controllers, and peripheral processing. The TMS34010’s efficient bit manip-
ulation facilitates demanding tasks such as high-quality, proportionally-
spaced text; this capability makes it especially useful in applications such as
desktop publishing. In graphics display systems, the TMS34010 provides
cost-effective performance for color or black-and-white bit-mapped displays.
Table 1-1 lists typical end uses of the TMS34010.

Table 1-1. Typical Applications of the TMS34010

Computers Industrial Control
- Terminals and CRTs - Robotics
- Windowing systems - Process control
- Electronic publishing - Instrumentation
- Laser printers - Motor control
- Personal computers - Navigation

- Printers and plotters
- Engineering workstations

- Copiers Telecommunications
- Document readers

- FAX - Video phones

- Imaging - PBX

- Data processing

Consumer Electronics

- Automotive displays
- Information terminals
- Cable TV

- Home control

- Video games

Introduction - Manual Organization

1.5 Manual Organization

The TMS34070 User's Guide describes TMS34010 operation, focusing on the
TMS34010’s role in applications that involve CRT-based, bit-mapped, graph-
ics systems. The user’s guide is divided into four major sections:

1) General information (Section 1)

2) Architecture (Sections 2-8)

3) Timing (Sections 9-11)

4) Instruction set (Sections 7, 12, and 13)

A glossary, an index, and a reference card are also provided.
Section 1 Introduction

Provides an overview of the TMS34010 and TMS34010 architecture, includ-
ing key features, a block diagram, and typical applications. Discusses manual
organization and lists suggested reading.

Section 2 Pin Functions

Hiustrates the TMS34010 pinout and contains general pin descriptions. Also
describes specific pin functions regarding the host interface, the local bus in-
terface, video timing signals, hold and emulator interface pins, and power,
ground, and reset pins.

Section 3 Memory Organization

Discusses 32-bit addressing methods, the TMS34010 memory map, and the
stack.

Section 4 Hardware-Supported Data Structures

Discusses hardware-supported data structures (such as fields and pixels) and
XY addressing.

Section 5 CPU Registers and Instruction Cache

Describes general-purpose register files A and B (including a reference of the
B registers’ graphics functions), the status register, the program counter, and
the instruction cache.

Section 6 1/0 Registers

Provides a detailed discussion of host interface registers, memory-interface
control registers, video timing and screen refresh registers, interrupt interface
registers, and 1/0 register addressing. Includes an alphabetical reference of
the 1/0 registers.

Section 7 Graphics Operations

Discusses graphics instructions such as PixBlts, PIXTs, and related topics such
as 2-dimensional arrays of pixels, window checking, XY-to-linear conversion,
and plane masking.

Section 8 Interrupts, Traps, and Reset

Describes external and internal interrupts, interrupt processing, and reset.

1-9

Introduction - Manual Organization

Section 9

Section 10

Section 11

Section 12

Section 13

Screen Refresh and Video Timing

Describes the horizontal sync, vertical sync, and blanking signals, horizontal
and vertical timing, and video RAM control.

Host Interface Bus
Discusses host interface pins, registers, and timing.
Local Memory Interface Bus

Discusses local memory interface timing, addressing mechanisms, and data
manipulation at the local memory interface.

Assembly Language Instruction Set

Discusses addressing modes, summarizes MOVE, PIXBLT, and PIXT in-
struction variations, and presents the entire TMS34010 assembly language
instruction set in alphabetical order.

Instruction Timings

Contains an overview of timing for general instructions, and specific timing
information for move and graphics instructions.

Appendix A TMS34010 Data Sheet

Appendix B

Emulation Guidelines for Prototyping

Appendix C Software Compatibility with Future GSPs

Appendix D Glossary

Introduction - Related Documentation, References, and Suggested Reading

1.6 Related Documentation, References, and Suggested Reading

The following books and articles provide further background in graphics and
system concepts associated with graphics.

Artwick, Bruce A. Applied Concepts in Microcomputer Graphics. Englewood
Cliffs, New Jersey: Prentice-Hall, 1984.

Asal, Short, Preston, Simpson, Roskell, and Guttag. "The Texas Instruments
34010 Graphics System Processor.” /EEE Computer Graphics and Appli-
cations vol.6 no.10, pp. 24-39.

Bresenham, J.E. "Algorithm for Computer Control of a Digital Plotter.” /BM
Systems Journal 4 No.1 (1965): 25-30.

Bresenham, J.E. "A Linear Algorithm for Incrementa! Display of Digital Arcs.”
Communications of the ACM 20 (Feb. 1977): 100-106.

Cody, William J. Jr., and William Waite. Software Manual for the Elementary
Functions. Englewood Cliffs, New Jersey: Prentice-Hall, 1980.

Foley, James, and Andries van Dam. Fundamentals of Interactive Computer
Graphics. Reading, Massachussetts: Addison-Wesley, 1982.

Gupta, Satish. “Architectures and Algorithms for Parallel Updates of Raster
Scan Displays.” Tech. Report CMU-CS-82-111, Computer Science Dept.,
Carnegie Mellon University, 1981.

Ingalls, D.H. "The Smalltalk Graphics Kernel.” Special issue on Smalltalk,
Byte, August 1981, pp. 168-194.

Kernighan, B., and D. Ritchie The "C" Programming Language. Englewood
Cliffs, New Jersey: Prentice-Hall, 1978.

Killebrew, C.R. Jr., “"The TMS34010 Graphics System Processor.” BYTE, De-
cember 1986, pp. 193-204.

Kochan, Stephen G. Programming in C. Hasbrouck Heights, New Jersey:
Hayden Book Company, 1983.

Newman, W.M., and R.F. Sproull. Principles of Interactive Computer
Graphics. 2nd ed. New York: McGraw-Hill, 1979.

Pike, Rob. "Graphics in Overlapping Bitmap Layers.” ACM Transactions On
Graphics 2 (April 1983): 135-160.

Pinkham, R., M. Novak, and K. Guttag. "Video RAM Excels at Fast Graphics.”
Electronic Design, August 18, 1983, pp. 161-168.

Pitteway, M.L.V. "Algorithm for Drawing Ellipses or Hyperbolae with a Digital
Plotter.” Computer Journal 10 (November 1967): 24-35.

Porter, T. and T. Duff. "Composing Digital Images.” Computer Graphics, July
1984, pp. 2563-259.

Sprouli, R.F. and I|.E. Sutherland. "A Clipping Divider.” Fall Joint Computer
Conference Washington, DC: Thompson Books, 1968.

Introduction - Related Documentation, References, and Suggested Reading

Van Aken, Jerry R. “An Efficient Ellipse-Drawing Algorithm.” /EEE Computer
Graphics & Applications 4 (Sept. 1984): 24-35.

Wientjes, Guttag, and Roskell. “First Graphics Processor Takes Complex Or-
ders to Run Bit-Mapped Displays.” Electronic Design Vol. 34, No.2
(January 23, 1986): 73-80.

The folliowing TMS34010 documents are available from Texas Instruments.
To obtain a copy of any of the Tl documents listed below, please call the Texas
Instruments Customer Response Center (CRC) at 1-800-232-3200.

- @ The TMS34010 Application Guide (literature number SPVA0Q7) is a
collection of individual application reports. Each application report dis-
cusses a specific TMS34010 application; for example, using a
TMS34010 in a 512x512-pixel minimum-chip system, designing
TMS34010-based systems that are compatible with various graphics
standards, and interfacing the TMS34010 to a variety of host processors.

® The TMS34010 Assembly Language Tools User’'s Guide (literature
number SPVU0O04) tells you how to use the TMS34010 assembler,
linker, archiver, object format converter, and simulator.

® The TMS34010 C Compiler User's Guide (literature number
SPVUOQO05) tells you how to use the TMS34010 C compiler. This C
compiler accepts standard Kernighan and Ritchie C source code and
produces TMS34010 assembly language source code. We suggest that
you use The C Programming Language (written by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall) as a companion to
the TMS34070 C Compiler User's Guide.

® The TMS34010 Math/Graphics Function Library User's Guide
(literature number SPVS006) describes a coliection of mathematics and
graphics functions that can be called from C programs.

® The TMS34010 Software Development Board User's Guide (lit-
erature number SPVU002) describes using the TMS34010 software de-
velopment board (a high-performance, PC-based graphics card) for
testing and developing TMS34010-based graphics systems.

® The TMS34010 Software Development Board Schematics (liter-
ature number SPVUQOQ3) is a companion to the TMS34070 Software
Development Board User's Guide.

[] The TMS34070 Font Library User's Guide (literature number

SPVUOO7) describes a set of fonts that are available for use in a
TMS34010-based graphics system.

1-12

Section 2

Pin Functions

This section discusses the TMS34010 pin functions. Section 2.1 contains a
TMS34010 pinout, summarizes the pin functions, and categorizes the signals
by function; Section 2.2 through Section 2.6 describe the functional catego-

ries.

Topics in this section include:

Section

2.1

NDONONN

2
3
4
5
.6

Pinout and Pin DesCriptionsc.cccvniiininiencnrenensetese s e senens
Host Interface Bus Signals
Local Memory Interface Signals ...
Video Timing Signalsccccocovevrccnceiceenen.
Hold and Emulator Interface Signals
Power, Ground, and Reset Signalscccoceeverenineicecenecencrec e

2-1

Pin Functions - Pinout and Pin Descriptions

2.1 Pinout and Pin Descriptions

The TMS34010 is packaged as a 68-pin plastic leaded chip carrier (PLCC).
Figure 2-1 shows a pinout of the TMS34010 processor, and Table 2-1 sum-
marizes the pin functions at each interface. Appendix A contains mechanical
information.

Figure 2-1. TMS34010 Pinout (Top View)

As Figure 2-2 shows, the TMS34010’s 68 pins are divided among several in-

terfaces:
Host interface 25 pins
Local memory interface 29 pins
Video timing interface 4 pins
Hold and emulator interfaces 3 pins
Power and reset 7 pins

Total: 68 pins

2-2

Pin Functions - Pinout and Pin Descriptions

Host Interface

Video Timing

Power, Ground
and Reset

<

HDO-HD15 LADO-LADISK . 18)

HFS0-HFS1

S _ ——

HREAD DDOUT ——————
[ALF———

Locel Memo
" Interface v

HOLD f————

s

Figure 2-2. TMS$34010 Major Interfaces

Table 2-1. Pin Descriptions

Hold and

—— » Emulator

Interfaces

Host Interface Bus Pins
Name Pin 1/0 Description

HCS 66 1 Host chip select
HDO-HD15 44-51,63-60 | 1/0 Host bidirectional data bus
HFSO,HFS1 67,68 1 Host function select
HINT 42 0 Host interrupt request
HIDS 63 | Host lower data select
HUDS 62 1 Host upper data select
HRDY 43 (o] Host ready
HREAD 64 | Host read strobe
HWRITE 65 ! Host write strobe

Pin Functions - Pinout and Pin Descriptions

Table 2-1. Pin Descriptions (Concluded)

Local Interface Bus Pins

Name Pin 1/0 Description
RAS 38 (0] Local row-address strobe
CAS 39 0 Local column-address strobe
DDOUT 36 0 Local data direction out
BEN 37 (o] Local data enable
LADO-LAD15 | 10-17,19-26 | 1/0 Local address/data bus
TAT 34 0 Local address latched
LCLK1,LCLK2 28,29 [0) Local output clocks
TINT1,TINT2 6,7 | Local interrupt request pins
LRDY 9 I Local ready
TR/QE 41 [0} Local shift-register transfer or output enable
W 40 0 Local write strobe
INCLK 5 1 Input clock

Hold and Emulation

Name Pin 1/0 Description
HOLD 8 | Hold request
RUN/EMU 2 | Run/Emulate
HIDA/EMUA 33 (o] Hold acknowledge or emulate acknowledge

Video Timing Signals

Name Pin 1/0 Description
BLANK 32 0 Blanking
HSYNC 30 1/0 Horizontal sync
VCLK 4 | Video clock
VSYNC 31 1/0 Vertical sync

Power, Ground, and Reset Signals

Name Pin 1/0 Description
RESET 3 | Device reset
Vee 27,61 I Nominal 5-volt power supply
Vss 1,18,35,562 | Ground

2-4

Pin Functions - Host Interface Bus Signals

2.2 Host Interface Bus Signals

The host interface pins are used for communication between the TMS34010
and a host processor. Signals output on these pins are assumed to be asyn-
chronous with respect to local clocks LCLK1 and LCLK2. To software running
on a host processor, the TMS34010’s host interface appears as a peripheral
device containing a block of four 16-bit registers. Table 2-2 describes the
host interface pins. Section 6 describes the host interface registers, and Sec-
tion 10 discusses host interface operation.

Table 2-2. Host Interface Signals

Signal

1/0

Description

HCS

Host Chip Select. HCS is driven active low to enable access to the 16-bit host
interface register that is selected by HFSO and HFS1. During the low-to-high
transition of RESET, the level on the HCS input determines whether the
TMS34010 is halted (if HCS is high), or begins immediately executing its reset
service routine (if HCS is low). In the second case, the HCS and RESET pins
may be tied directly together.

HFSO, HFS1

Host Function Select. HFSO and HFS1 determine which of the four 16-bit
host interface registers is selected during a read or write cycle that is initiated
by the host processor.

HFS1HFSO Register Description
0 (o] HSTADRL LSBs of pointer address
0 1 HSTADRH MSBs of pointer address
1 0 HSTDATA Data buffer register
1 1 HSTCTL Control register

HREAD

Host Read Strobe. HREAD is driven active low during a read cycle that is
initiated by the host processor. This enables the contents of the selected host
interface register to be output on HDO-HD15. HREAD should not be active low
at the same time that HWRITE is active low.

HWRITE

Host Write Strobe. HWRITE is driven active low during a write cycle that is
initiated by the host processor. This enables the contents of HDO-HD15 to be
written to the selected host interface register. HWRITE should not be active low
at the same time that HREAD is active low.

HLDS

Host Lower Data Select. HLDS is driven active low during a read or write
cycle that is initiated by the host. This enables the lower byte (bits 0~7) of the
selected host interface register to be accessed.

HUDS

Host Upper Data Select. HUDS is driven active low during a read or write
cycle that is initiated by the host processor. This enables the upper byte (bits
8-15) of the selected host interface register to be accessed.

T in systems that do not use the host interface, it may be desirable to puli these inputs up to the +V¢¢

level.

2-5

Pin Functions - Host Interface Bus Signals

Table 2-2. Host Interface Signals (Concluded)

Signal

1/0

Description

HRDY

o

Host Ready. HRDY indicates when the TMS34010 is ready to complete a read
or write cycle that is initiated by the host. Except during an access of a host
interface register, HRDY is always high. HRDY is driven low if the host pro-
cessor attempts to initiate an access of a host interface register before the
TMS34010 has had sufficient time to complete all processing resulting from an
access initiated previously by the host. HRDY always goes low briefly at the
start of a HSTCTL register access. When HRDY is driven low, the host must
wait to complete the access until HRDY is again driven high. While HCS is high,
HRDY is driven high.

Host Interrupt Request. HINT follows the INTOUT bit in the HSTCTL reg-
ister; it is typically used to transmit interrupt requests from the TMS34010 to the
host processor. When INTOUT is set to 1 by the TMS34010, HINT is driven
active low. HINT remains active low until the host writes a 0 to INTOUT, at
which time HINT becomes inactive high.

HDO-HD15

110

Host Bidirectional Data Bus. The host data pins, HDO~HD15, form a bidi-
rectional 16-bit bus which is used to transfer data between the selected 16-bit
host interface register and the host processor. HDO is the LSB and HD15 is the
MSB.

2-6

Pin Functions - Local Memory Interface Signals

2.3 Local Memory Interface Signals

The TMS34010 uses the local bus interface pins to communicate with external
memory and with memory-mapped 1/0 devices. The signals at this interface
are used directly to control DRAMs (dynamic RAMs) and VRAMs (video
RAMs). Section 11 discusses local memory interface operation.

Table 2-3. Local Bus Interface Signals

Signal

/0 Description

DEN

0 Local Data Enable. DEN is an active-low output; it drives the active-low
output-enable inputs on the bidirectional transceivers (such as the
74ALS245) which are used to buffer data input and output on the
LADO-LAD15 pins. External buffering may be required on the LADO-LAD15
pins when the TMS34010 is interfaced to a large number of local memory
devices.

DDOUT

0 Local Data Direction Out. DDOUT drives the direction control inputs on
the bidirectional transceivers (such as the 74ALS245) which are used to buf-
fer data input and output on the LADO-LAD15 pins. External buffering may
be required on the LADO-LAD15 pins when the TMS34010 is interfaced to a
large number of local memory devices. During write cycles, DDOUT is driven
high to enable data to be output from the LADO~LAD15 pins while DEN is
driven active low. During read cycles, DDOUT goes low to enable data to be
input to the LADO-LAD15 pins while DEN is driven active low. At all other
times, DDOUT remains driven to the default high level.

0 Local Address Latched. An external latch can use the high-to-low transi-
tion of TAL to capture the column address from the LADO-LAD15 pins. When
a transparent latch such as a 74ALS373 is used, the address remains latched
as long as TAL remains active low.

(o] Local Row Address Strobe. The RAS output drives the RAS inputs of
DRAMs and VRAMs.

o} Local Column Address Strobe. The CAS output drives the TAS inputs of
DRAMs and VRAMs.

g

[0} Local Write Strobe. The active-low W output drives the W inputs of
DRAMs and VRAMs. W can also be used as the active-low write enable to
static memories and other devices connected to the TMS34010 local interface.
During a local memory read cycle, W remains inactive high while CAS is
strobed active low. During a local memory write cycle, W is strobed active low
while TAS is low. During shift-register-transfer cycles, the state of W indicates
whether the transfer is from shift register to memory (W is low) or memory to
shift register (W is high). At all other times, W is driven to the default high
level.

TR/QE

0 Local Shift Register Transfer or Output Enable. This pin connects di-
rectly to a VRAM’s TR/QE (or DT/OE) pin. During local memory read cycles,
the TR/QE pin functions as an active-low output enable to gate data from
memory to the LADO-LAD15 pins. During VRAM shift-register-transfer cy-
cles, TR/QE is driven active low during the high-to-low transition of RAS.

INCLK

| Input Clock. INCLK is the input clock used to generate the LCLK! and
LCLK2 outputs, to which all processor functions in the TMS34010 are syn-
chronous. A separate input clock, VCLK, controls the video timing registers.

2-7

Pin Functions - Local Memory Interface Signals

Table 2-3. Local Bus Interface Signals (Concluded)

Signal

1/0

Description

LCLK1,LCLK2| ©O

Local Qutput Clocks. These two output clocks, 90 degrees out of phase with
each other, provide convenient synchronous control of external circuitry to the
TMS34010’s internal timing. All clocked signals output from the TMS34010,
with the exception of the CRT timing signals, are synchronous to these clocks.

LRDY

Local Ready. LRDY is driven low by external circuitry to inhibit the
TMS34010 from completing a local memory cycle it has initiated. While LRDY
remains low, the TMS34010 continues to wait. When LRDY is again driven
high, the TMS34010 completes the cycle. While LRDY is low, the TMS34010
generates internal wait states in increments of one full LCLK1 cycle in duration.
LRDY can be driven low to extend local memory read and write cycles, shift-
register-transfer cycles, and DRAM refresh cycles. During internal cycles, the
TMS34010 ignores LRDY.

TINT1,TINT2

Loca!l interrupt Request Pins. Interrupt requests from external devices are
transmitted to the TMS34010 on the TINT1 and LINT2 pins. Each pin activates
the request for one of two external interrupt request levels. An external device
generates an interrupt request by driving the appropriate interrupt request pin
to its active-low state. The pin should remain active low until the TMS34010
has recognized the request.

Transitions on the two interrupt request pins are assumed to be asynchronous
with respect to local clocks LCLK1 and LCLK2; the signals on these pins are
synchronized internally before being used internally.

LADC-LAD15| /0

Local Address/Data Bus. LADO-LAD15 form the local multiplexed
address/data bus. At the start of a memory cycle, two addresses (row and col-
umn) are output on LADO-LAD15. During a read cycle, data are input on
LADO-LAD15 during the latter part of the cycle. During a write cycle, data are
output on LADO-LAD15 during the latter part of the cycle. LADO is the LSB,
and LAD15 is the MSB. During the time the row address is output on
LADO-LAD14, status bit RF is output on LAD15. RF is active low at the start
of a DRAM-refresh cycle (either RAS-only or TAS-before-RAS). During the time
that the column address is output on LADO-LAD13, status bits TR and 1AQ are
output on LAD15 and LAD14, respectively. |AQ is active high during a read
cycle in which the TMS34010 fetches an instruction word from the local me-
mory. During all other cycles, IAQ is inactive low. TR is active low during
shift-register-transfer cycles. (The level output on LAD14 during the high-
to-low transition of CAS is always the same as the level output on TR/QE during
the high-to-low transition of RAS.)

Notes: 1) The system designer must ensure that LRDY is not held low for so long that the TMS34010
is prevented from performing the necessary number of DRAM refresh cycles or is prevented
from refreshing the display by performing a VRAM memory-to-shift-register cycle during
horizontal retrace.

The operation of TINT1 and TINT2 is affected by the RUN/EMU pin. Make sure this pin is in
the proper state.

2)

2-8

Pin Functions - Video Timing Signals

2.4 Video Timing Signals

The video timing signals (BLANK, HSYNC, and VSYNC) control the horizontal
and vertical sweep rates of the video monitor. They also synchronize the dis-
play on the monitor to video data that is output from the VRAMs. Section 9
discusses video timing and screen refresh operations.

Table 2-4. Video Timing Signals

Signal 1/0 Description
HSYNC 1/0 Horizontal Sync. HSYNC is the horizontal sync signal used to control external

video circuitry. It is programmed as either an input or an output by means of
two control bits in the DPYCTL register. When configured as an output, the
active-low horizonta!l sync signal is generated by the TMS34010’s on-chip vi-
deo timers. When configured as an input, the TMS34010 synchronizes its video
timers to externally-generated horizontal sync pulses. Immediately following
reset, HSYNC is configured as an input.

VSYNC 1/0 | Vertical Sync. VSYNC is the vertical sync signal used to control external video
circuitry. It is programmed as either an input or an output by means of a control
bit in the DPYCTL register. When configured as an output, the active-low ver-
tical sync signal is generated by the TMS34010’s on-chip video timers. When
configured as an input, the TMS34010 synchronizes its video timers to exter-
nally-generated vertical sync pulses. Immediately following reset, VSYNC is
configured as an input.

BLANK 0 Blanking. BLANK is a composite blanking signal used to turn off the electron
beam of a CRT during both horizontal and vertical retrace intervals. This signal
may also be used to control the starting and stopping of the VRAM shift regis-
ters.

VCLK I Video Clock. VCLK is derived from the dot clock of the external video system
and is used internally to drive the TMS34010’s video timing logic. The signals
output at the BLANK, HSYNC, and VSYNC pins are synchronous to VCLK. VCLK
is not required to have any timing relationship with respect to INCLK; that is,
VCLK and INCLK can be asynchronous. In order to read HCOUNT and
VCOUNT registers reliably, VCLK should be held high during the read. In sys-
tems which do not use the video timing registers or require automatic screen
refreshing, VCLK can be strapped high.

Note: The operation of ASYNC and VSYNC is affected by the RUN/EMU pin. Make sure this pin is in the
proper state.

2-9

Pin Functions - Hold and Emulator Interface Signals

2.5 Hold and Emulator Interface Signals

The TMS34010 hold interface permits other devices to request and be granted
control of the local interface bus.

The emulator interface is used to control the TMS34010 when it is used for
emulation. The RUN/EMU pin may remain unconnected in nonemulation ap-
plications.

Table 2-5. Hold and Emulator Interface Signals

Signal

1/0 Description

HOLD

| Hold Request. The HOLD pin is driven active low by an external device to
signal a request that the TMS34010 release ownership of the local memory bus.
Once the TMS34010 has acknowledged the hold request via a hold acknowl-
edge signal, the external device assumes ownership of the bus. The device must
continue to assert its hold request until it has released the bus.

HLDA/EMUA

0 Hold Acknowledge and Emulate Acknowledge. The HLDA/EMUA pin is
muitiplexed between two functions: (1) acknowledgment of hold requests and
(2) acknowledgment of emulation requests.

The hold acknowledge signal (HEDA) is output during phases Q3 and Q4 of the
local clock cycle. The emulate acknowledge signal (EMUA) is output during
phases Q1 and Q2. HLDA is driven active low in response to a hoid request from
an external device, but not until the TMS34010 has released the bus to the re-
questing device. The device must delay taking possession of the bus until it
has received an active HLDA signal. Once an active-low hold acknowledge
signal has been transmitted during Q3-Q4, it will continue to be transmitted
during Q3-Q4 of each local clock period until the external device ceases to as-
sert its hold request.

EMUA is driven active low to indicate to external circuitry that the TMS34010
has halted in response to an EMU command input on the RUN/EMU pin.
HLDA/EMUA is also driven low when an EMU opcode is executed by the
TMS34010, but only during phases Q1 and Q2 of a single LCLK1 cycle. Exe-
cution of an EMU opcode causes an active-low signal to be output at the
HLDA/EMUA pin during phases Q1 and Q2, so external devices that generate
hold requests should avoid interpreting these signals as hold acknowiedgment.

RUN/EMU

| Run/Emulate. This pin is defined as a no-connect during normal system op-
eration. The RUN/EMU pin should not be pulled low except during factor
testing or chip emulation. An internal pull-up load permits RUN/EMU to remain
unconnected during normal use.

If RUN/EMU is pulled low, RESET, TINT1, TINT2, HSYNC, and VSYNC are recon-
figured to perform special functions used only during emulation and factory
testing.

Pin Functions - Power, Ground, and Reset Signals

2.6 Power, Ground, and Reset Signals

Six TMS34010 pins are dedicated to ground and power supply. Section 8
provides more details about RESET.

Table 2-6. Power, Ground, and Reset Signals

Signal 1/0 Description
Vee | Vee (2 pins). Two +5-volt power supply inputs.
Vss | Vgs (4 pins). Four electrical ground inputs.
RESET | Reset. RESET is pulled low to reset the device during normal operation.

While RESET is asserted low, the internal registers of the TMS34010 are set
to an initial known state, and all output and bidirectional pins are driven ei-
ther to inactive levels or to high impedance. The behavior of the TMS34010
chip following reset depends on the level of the HCS input just prior to the
low-to-high transition of RESET. If HCS is low, the TMS34010 begins exe-
cuting the instructions pointed to by the reset vector. if HCS is high, the
TMS34010 is haited until a host processor writes a O to the HLT bit in the
HSTCTL register.

Transitions on the RESET pin are assumed to be asynchronous with respect
to local clocks LCLK1 and LCLK2; the signal input on this pin is synchro-
nized internally before it is used internally.

2-11

Pin Functions

Section 3

Memory Organization

This section presents details of physical and logical addresses, illustrates the
TMS34010 memory map, and describes stack operation.

Section Page
3.1 Memory ADAreSSINGoccoevieuieieiiiecieiieeceeeie et re e eeen e 3-2
3.2 MEMOIY MAAP oottt ettt et eateeas s enee e eeeenneseens 3-4
3.3 SHACKS ittt at e e s eane 3-6

3-1

Memory Organization - Memory Addressing

3.1 Memory Addressing

3-2

The TMS34010 is a bit-addressable machine with a 32-bit internal memory
address. The total memory capacity is four gigabits (or 512 megabytes); the
TMS34010 supports external addressing of 128 megabytes.

Memory is accessed as a continuously addressable string of bits. Each 32-bit
address points to an individual bit within memory. Groups of adjacent bits
form data structures called fields. A field is specified by its starting bit ad-
dress and its length. The TMS34010 supports field lengths from 1 to 32 bits.
Bit addresses range from 00000000h to OFFFFFFFFh.

Figure 3-1 illustrates the logical memory structure.

32-Bit
Loglcal Address
N
Memory ANEREERERE
] Wl L
224 N+1 N N-1 10

Figure 3-1. Logical Memory Address Space

Figure 3-2 iliustrates physical memory organization. The TMS34010 com-
municates with memory over a 16-bit data bus, and always reads or writes a
complete 16-bit word from or to memory. A word accessed during a memory
cycle always begins on an even 16-bit boundary; thus, the four LSBs of the
32-bit starting address of the word are Os. Bits within a word are numbered
from O to 15; bit 15 is the MSB and bit O is the LSB. A word is identified by
the address of its LSB. In this document, the LSB of a memory word is de-
picted as the rightmost bit in the word.

Memory Organization - Memory Addressing

< p 32-Bit Logical Address p

MSBs | 26-Bit LSBs

» Physical Address

31 30|29 N 43 0
[——— N e
Not Used Select Bit Boundary
Externally Within Word

Memory /| Word N+1 | word N | word N~1 K

151413121110 9 8 7 6 5 4 3 2 1 0

meB LsB

Figure 3-2. Physical Memory Addressing

The four LSBs of the 32-bit logical address in Figure 3-2 do not appear on the
local memory bus. When the TMS34010 extracts a data structure that does
not begin and end on even word boundaries, these four LSBs are used inter-
nally to indicate a bit boundary within an accessed word. Control logic at the
local memory interface automatically performs the bit alignment and masking
necessary to extract a data structure from physical memory; this is completely
transparent to software. If the data structure being extracted straddles word
boundaries, multiple read cycles are required. Similarly, inserting a data
structure intoc memory may require a series of read and write cycles, accom-
panied by the internal masking and shifting of data to properly align the data
structure within memory. The memory-control logic performs these tasks au-
tomatically.

The two MSBs of the 32-bit logical address are not output. The TMS34010
supports an external address range of 128 megabytes of physical memory.

3-3

Memory Organization - Memory Map

3.2 Memory Map

34

Figure 3-3 illustrates the TMS34010 memory map. Memory is logically or-
ganized as four gigabits, but is physically accessed 16 bits at a time. Locations
are shown as 16-bit words, identified by 32-bit addresses whose four LSBs
are Os. Word addresses range from 00000000h to FFFFFFFOh (bit address
00000000h is the rightmost bit in the word at the bottom of Figure 3-3, and
bit address FFFFFFFFh is the leftmost bit in the word at the top.) Reading
or writing to an address in the range CO0000000h to CO0001 FOh accesses an
internal 1/O register. Reading or writing to any address outside this range
accesses off-chip memory (or a memory-mapped device) external to the
TMS34010.

Bit 232-1
Address /_ {last bit in memory)
FFFF FFFO ‘] |nterrupt
64 words
FFFF FCOO |512 words 4 Vectors
FFFF FBFO [
FFFF E000 [/ A
FFFF DFFO
27— 1024 words General
Use
€000 2000
C000 1FFO 7
Reserved
C000 0200 {1 A
C000 01F0 {512 words 4 Internal 1/0
32 words Regist
€000 0000 § egisters
BFFF FFFO
3 x 2% words General
Use
0000 0000 ha
Bit 0
16 bits -l (first bit in memory)

Figure 3-3. TMS34010 Memory Map

As Figure 3-3 shows, memory is divided into several regions:

° General use

Addresses ranges Oh-BFFFFFFOh and C0002000h-FFFFDFFQOh are for
general use (executable code, data tables, etc.).

;

® 1/0O registers

Addresses CO000000h~-C00001 FOh are reserved for the 16-bit 1/0 reg-
isters. Section 6 discusses the /O registers; it contains a map of this

Memory Organization - Memory Map

memory area which associates each I/O register with the appropriate
address.

° Interrupt, Reset, and Trap Vectors

Addresses FFFFFCOOh-FFFFFFEOh are reserved for 32 interrupt, reset,
and trap vectors. A vector is a 32-bit address that points to the starting
location in memory of the appropriate interrupt, reset, or trap service
routine. Each address is stored in physical memory as two consecutive
16-bit words, with the 16 LSBs at the lower address. Section 8 contains
more information about interrupts and traps.

® Reserved memory

Addresses C0000200h—-C0001FFOh are reserved for future expansion of
the 1/0 registers.

Addresses FFFFEOOOh-FFFFFBFOh are reserved for future expansion of
the interrupt vectors.

3-5

Memory Organization - Stacks

3.3 Stacks

The TMS34010’s system stack is implemented in local memory and managed
in hardware. The stack is used to store return addresses and processor status
information during interrupts, traps, and subroutine calls. The contents of
general-purpose registers can be pushed onto the stack and popped off the
stack. The system stack can also be used for dynamically allocated data stor-
age.

The stack is accessed through a dedicated 32-bit internal register, called the
stack pointer, or SP. The SP points to the top of the system stack; it can be
accessed as register 15 in either register file.

In addition to the system stack, you can define your own auxiliary stacks. The
system stack always grows toward lower memory addresses; an auxiliary stack
can be defined to grow toward either lower or higher addresses. The MOVE
and MOVB instructions, combined with the automatic predecrement and
postincrement addressing modes, facilitate pushing and popping auxiliary
stack data. One or more registers in the A or B files can be used by software
as auxiliary stack pointers and frame pointers. The indexed addressing modes
can be used in conjunction with a frame pointer to access variables embedded
within the stack.

3.3.1 System Stack

3-6

Figure 3-4 shows the structure of the system stack, which grows in the di-
rection of lower memory addresses.

The SP points to the top of the stack; it contains the 32-bit address of the LSB
(bit 0) of the value on top of the stack. The SP can contain any 32-bit ad-
dress; however, stack operations execute more efficiently when the four LSBs
of the SP are 0s. This aligns the SP to word boundaries in memory, reducing
the number of memory cycles necessary to push values onto the stack or pop
values off the stack.

Any instruction that manipulates general-purpose registers (A0O-A14 or
B0-B14) can also be used to manipulate the SP. The SP can be specified as
the source or destination operand in any instruction that operates on the
general-purpose registers. Instructions that manipulate the SP include:

Instructions that Push Instructions that Pop
Values on the Stack Values from the Stack

MMTM SP, register list MMFM SP, register list

CALL Rs RETI

CALLA absolute address RETS

CALLR refative address POPST

TRAP number MOVE *SP+, Rd

PUSHST

MOVE Rs, -*SP

Memory Organization - Stacks

Memory

e\
f——16—

Highest Address

Stack Bottom

System
tack
Area

8P

Lowest Address

Figure 3-4. System Stack

3.3.1.1 Saving Registers on the System Stack

Register information can be stored on the stack during an interrupt or a sub-
routine call. This frees up the register for use by an interrupt routine or a su-
broutine, and allows you to restore the original register values from the stack
when the routine finishes executing.

During an interrupt, the contents of the PC and ST are automatically saved
on the stack; if you want to save values that are in general-purpose registers,
you can use the MMTM and MMFM instructions. MMTM pushes multiple
general-purpose registers onto the stack, and MMFM pops multiple gener-
al-purpose registers from the stack.

When the contents of a 32-bit register are pushed onto the stack, they are
stored in two consecutive 16-bit words. The 16 MSBs are stored at the higher
memory address, and the 16 LSBs are stored at the lower address. This is
shown in Figure 3-5, which demonstrates the effects of the foilowing in-
struction sequence:

MMTM SP, AO ; Push register AO onto stack
MMFM SP, Al ; Pop stack into register Al

3-7

Memory Organization - Stacks

e Figure 3-5 a shows the original state of the stack and registers.
Figure 3-5 b illustrates the state after AQ is pushed onto the stack.
(] Figure 3-5 ¢ shows the result of popping the top of the stack into A1.

General-Purpose
Memory Register File A

(a)

Stack Bottom .
32 —.1—]——

s N}

‘-—32 —-'
AOf 01234567h
Al 89ABCDEFh

MMTM SP, AO

Lowest Address =g + <+

General-Purpose
Register File A

(b) 32—
AOT™ 01234567h
A1 [B9ABCDEFR

Stack Bottom — Stack]
L
32— [~ —Gizan__n-16
Y N~

MMFM SP, AL
Lowest Address ————{ '~ o

General-Purpose
Memory Register File A

t© fo—— 16— Je— 32—

A0 01234567h

Stack Bottom -—l_—. a1]_01234567h
p— 32— Stack : ~

S ——

Lowest Address —————»{ « +

Ao

Figure 3-5. Stack Operations
The TMS34010 performs two steps to push the contents of a 32-bit register
onto the top of the stack:

1) Decrement the PC by 32.
2) Push the register contents onto the stack.

The TMS34010 performs two steps to pop the top of stack into a 32-bit reg-
ister:

1) Pop the 32 bits at the top of the stack into the register.
2) Increment the SP by 32.

3-8

Memory Organization - Stacks

3.3.1.2 Saving Information On the System Stack During an Interrupt

During an interrupt, the TMS34010 pushes the PC and ST onto the stack; this
allows the interrupted routine to resume execution when the interrupt proc-
essing is completed. An interrupt routine performs the following actions:

1) Decrement the SP by 32.

2) Push the PC onto the stack.

3) Decrement the SP again by 32.
4) Push the ST onto the stack.

During a return from an interrupt:

1) Pop the 32 bits at the top of the stack into the ST.
2) Increment the SP by 32.

3) Pop the 32 bits at the top of the stack into the PC.
4) Increment the SP again by 32.

3.3.1.3 Saving Information On the System Stack During a Subroutine Call

A subroutine call saves the state of the calling routine on the stack; this allows
the routine to resume execution when the subroutine completes. A subroutine
call performs the following actions:

1) Decrement the SP by 32.
2) Push the PC onto the stack.

During a return from a subroutine:

1) Pop the 32 bits at the top of the stack into the PC.
2) Increment the SP by 32.

3.3.2 Auxiliary Stacks

Auxiliary stacks can be managed in software. Any A- or B-file register, except
the SP, can be used as the auxiliary stack pointer. Auxiliary stacks are typically
used to contain dynamically allocated data storage.

In the following discussion, STK represents the auxiliary stack pointer. STK
is a symbol that must be equated to one of the general-purpose registers; for
example:

STK .set AO

The STK may contain any 32-bit value; however, stack operations execute
more efficiently when the four LSBs of the STK are Os. This aligns the STK
to word boundaries in memory, reducing the number of memory cycles nec-
essary to push values onto the stack or pop values off the stack.

As Figure 3-6 and Figure 3-7 show, the auxiliary stack can be configured to
grow in either direction in memory. The memory is shown in these figures as
a string of continuously addressable bits.

3-9

Memory Organization - Stacks

3.3.2.1 An Auxiliary Stack that Grows Toward Lower Addresses

Figure 3-6 shows a stack that grows toward lower memory addresses:

Figure 3-6 a shows the original stack.

In Figure 3-6 b, a field of arbitrary size is pushed onto the stack with this
instruction:

MOVE Rs, *-STK

(Rs and STK represent general-purpose registers.)

In Figure 3-6 ¢, the field is popped off the stack with this instruction:
MOVE *STK-, Rd

(Rd and STK represent general-purpose registers.)

Between instructions, the STK always points to the lowest bit address in the
stack - this corresponds to the very top of the stack. You can use the MMTM
STK register list instruction to save multiple registers on the stack in Figure

3-

6. Later, you can restore the registers to their former values with an
MMFM STK register list instruction.
Stack
/e
@ S
Low
Address ™
) Fleld S
8§TK
Stack
/\
(c) 5

87K

Figure 3-6. An Auxiliary Stack that Grows Toward Lower
Addresses

Memory Organization - Stacks

3.3.2.2 An Auxiliary Stack that Grows Toward Higher Addresses
Figure 3-7 shows a stack that grows toward higher memory addresses:
[) Figure 3-7 a shows the original stack.

[) In Figure 3-7 b, a field of arbitrary size is pushed onto the stack using
the following instruction:

MOVE Rs, *STK+
® In Figure 3-7 c, the field is popped off the stack with this instruction:

MOVE *-STK, Rd

Between instructions, the STK always points to one plus the highest bit ad-
dress in the stack - this location is one bit beyond the very top of the stack.

Stack
A
@ %
— R esses s‘1[|< Addresses >
Stack
/ A
® S | Fleld
T
8TK
Staok
I A \

© ¢

T :

§TK

Figure 3-7. An Auxiliary Stack that Grows Toward Higher
Addresses

Memory Organization

Section 4

Hardware-Supported Data Structures

The TMS34010 supports several data structures at the machine level:

[Fields are configurable data structures whose length can be defined
within the range 1 to 32 bits. Two field sizes can be defined simul-
taneously. A field can begin and end at arbitrary bit addresses.

(Bytes are a special case of field in which the field length is fixed at eight
bits and is sign extended. Bytes can begin on any bit boundary within
a word.

® Pixels are configurable data structures; pixel length can be programmed
to be 1, 2, 4, 8, or 16 bits (always a power of two). Pixels are aligned
so that they do not cross word boundaries in memory.

® Two-dimensional pixel arrays, or pixel blocks, are rectangular groups
of pixels that are manipulated using the PIXBLT (pixel block transfer)
and FILL (pixel block fill) instructions. A pixel array can be moved from
one area of memory to another in a single PixBlt operation. It can be
combined with another array of the same size by performing Boolean or
arithmetic operations on the corresponding pixels of the two arrays.

The number of bits in a pixel, field, or array is programmable, but byte length
is fixed. Two field sizes and one pixel size can be specified simuitaneously.
The size and starting addresses of the pixel arrays that are manipulated during
a PixBlt operation are specified by the values loaded into dedicated hardware
registers.

Topics in this section include:

Section
B FIelAS oottt r e
4.2 Pixels ..coovvevnvennnnnen.
4.3 XY Addressing
4.4 PixXel AITAYS ..ooiieiiiieeieeeeeit et ee ettt n e es s e e ssssa e s e n b baasien

4-1

Hardware-Supported Data Structures - Fields

4.1 Fields

4-2

The TMS34010 supports two software-configurable field types, fie/d 0 and
field 7. A field in memory is defined by two parameters:

) Starting address and
® Field size (1 to 32 bits)

A field’s starting address is the address of the field's LSB. A field can begin
at an arbitrary bit address in memory. When a field is moved from memory to
a general-purpose register, the field is right justified within the register; that
is, the field's LSB coincides with the register’s rightmost bit (bit 0). The reg-
ister bits to the left of the field are all 1s or all Os, depending on the values of
both the appropriate FE (field extension) bit in the status register, and the sign
bit (MSB) of the field. If FE=1, the field is sign extended; if FE=0, the field
is zero extended.

Field size can range from 1 to 32 bits. The lengths of fields 0 and 1 are defined
by two 5-bit fields in the status register, FSO and FS1.

Figure 4-1 illustrates a field in memory. In this example, the field straddles the
boundary between words N and N+7 in memory. Field extraction and in-
sertion is performed by on-chip hardware:

° To move the field to a general-purpose register, the TMS34010 extracts
the field from memory by reading word N and word N+7 in separate
cycles.

L To move the field from a general-purpose register, the TMS34010 inserts
the field into memory by reading and writing word N, and reading and
writing word N+7.

The memory operations necessary to insert or extract a field are performed
automatically by special hardware, and are transparent to software.

32-Bit Logical Address »

2 26-Bit 4
——— _—
MSBs Physioal Address LEBs

31 30|20 N 413 O

Memory

Word N+1 ——WO——WOM N

L Fleld J
I Size 1

Figure 4-1. Field Storage in External Memory

Hardware-Supported Data Structures - Fields

In Figure 4-1, word N is pointed to by a 26-bit physical address output by the
TMS34010 to memory. This 26-bit address corresponds to bits 4-29 of the
field’s 32-bit logical address. The four LSBs of the logical address point to the
beginning of the field within word V.

The number of memory cycles required to extract or insert a field depends on
how the field is aligned in memory. Field manipulation is more rapid when
fields are stored in memory so that they do not cross word boundaries. Figure
4-2 illustrates various cases of alignment and nonalignment of fields to word
boundaries in memory. Given a field starting address and field length, the
memory controller will recognize the specified field alignment as one of the
seven cases in Figure 4-2. Field extraction and field insertion are performed
in a manner that requires the minimum number of memory cycles.

Case A Word N _
16-Bit Fleld —»

!Fleld!
case B o[Woran]
Field—H

Fleld
Case C WordN+1 | Word N
————32-Bit Fleld—————
Case D WordN+1 | wordN |
Fleid »
Case E Word N+1 Word N |
Fleld—»

CaseF | WordN+1 | wordN__|

|2 Fleld ¥
Case @ | WordN+2 | WordN+1 | wordN |
= Fleid »

Figure 4-2. Field Alignment in Memory

Case A A 16-bit field is aligned on word boundaries. Field extraction requires a single

read cycle, and field insertion requires a single write cycle.

B1-B3 The field length is less than 16 bits.

® In Case B1, the field starting address is not aligned to a word boundary,
although the end of the field coincides with the end of the word.

® In Case B2, the field starting address is aligned to a word boundary, but
the end of the field does not coincide with the end of the word.

® [n Case B3, the field length is 14 bits or less, and neither the start nor the
end of the field is aligned to a word boundary.

4-3

Hardware-Supported Data Structures - Fields

4-4

Case C

Case D

Case E

Case F

Case G

For Cases B1-B3, a field extraction requires a single read cycle. A field in-
sertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N

A 32-bit field is aligned on word boundaries. A field extraction requires the
following sequence of memory cycles:

1) Read word N
2) Read word N+7

A field insertion requires the following sequence of memory cycles:

1) Write word N
2) Write word N+17

The field size is greater than 16 bits. The field starting address is not aligned
to a word boundary, but the end of the field coincides with the end of the
word. A field extraction requires the following sequence of memory cycles:

1) Read word N
2) Read word N+7

A field insertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N
3) Write word N+7

The field size is greater than 16 bits. The field starting address is aligned to a
word boundary, but the end of the field does not coincide with the end of the
word. A field extraction requires the following sequence of memory cycles:

1) Read word N
2) Read word N+17

A field insertion requires the following sequence of memory cycles:

1) Write word N
2) Read word N+7
3) Write word N+7

The field straddles the boundary between two words. Neither the start nor the
end of the field is aligned to a word boundary. A field extraction requires the
following sequence of memory cycles:

1) Read word N
2) Read word N+7

A field insertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N/
3) Read word N+7
4) Write word N+7

The field size ranges from 18 to 32 bits, and the field straddles two word
boundaries. Neither the start nor the end of the field is aligned to a word
boundary. A field extraction requires the following sequence of memory cy-
cles:

1) Read word N

2) Read word N+7
3) Read word N+2

Hardware-Supported Data Structures - Fields

A field insertion requires the following sequence of memory cycles:

1) Read word N
2) Write word N
3) Write word N+7
4) Read word N+2
5) Write word N+2

A field insertion modifies only the portion of a word that lies within a field.
The TMS34010 memory controller must perform a read-modify-write opera-
tion when a field that does not begin and end on even 16-bit word boundaries
is to be written to memory. This occurs when the four LSBs of the address
are not 0, or when the specified field size is a value other than 16 or 32. The
memory controller uses these two parameters (address LSBs and field size) to
produce a mask that identifies the bits in the word corresponding to the field.
Hardware uses the mask to perform the read-modify-write cycle. The
TMS34010’s local memory control logic automatically generates the mask and
executes the read-modify-write operation; this is transparent to software.

Figure 4-3 shows an example of inserting a 5-bit field stored in a register to
logical address 00000008h.

L In Figure 4-3 a, the field to be inserted is shown right-justified in the
16 LSBs of the designated general-purpose register.

[In b, memory controller hardware has rotated the field to align it with the
destination in memory.

(] In ¢, the TMS34010 reads the original word from the destination in me-

mory.
® In d, the mask is generated to designate the bits to be modified.
[] In e, the field is inserted into the word from memory, and the result is

written back to the destination address in memory.

5 14 13 2 1 10 © 8 7 6 5 4 3 2 1 0
(@ Fledtobeinserted | X X X X X X X X X X X F F F F F]|

(Rotate toaligntobt8 | X X X F F F F F X X X X X X X X]|

(c) Initia) destination data JA A A A A A A A A A A A A A A A]

(d) Mask generated |0001111100000000|

{e) Final destinationdata JA A A F F F F F A A A A A A A Al

Figure 4-3. Field Insertion

In the more complex case in which a field straddles one or two word bound-
aries in memory, the portion of the field lying within each word is inserted into
that word using the methods described above.

4-5

Hardware-Supported Data Structures - Pixels

4.2 Pixels

The term pixel has two meanings in the context of a TMS34010-based
graphics system. Outside the TMS34010, a pixel is a picture element on a
display surface. Inside the TMS34010, a logical pixel is a software-
configurable data structure supported by the TMS34010 instruction set. The
logical pixel data structure in TMS34010 memory contains the information
needed to specify the attributes of a picture element visible on a screen. The
information for a horizontal line of pixels on the screen is usually stored in
consecutive words in memory.

4.2.1 Pixels in Memory

4-6

Within TMS34010 memory, the pixel data structure is defined by two param-
eters:

® Starting address and
® Pixel size

A pixel’s starting address is the address of the LSB of the pixel.

Pixel size (the number of bits per pixel) is defined in the PSIZE register. A
pixel can be 1, 2, 4, 8, or 16 bits long. The TMS34010 treats pixels as a spe-
cial case of a field in which the field size is constrained to be a power of two.
However, pixels do not cross word boundaries within memory; they are
aligned within memory so that an integral number of pixels is contained within
the boundaries of a memory word. For example, a 2-bit pixel should begin at
an even bit address whose LSB is 0, a 4-bit pixel should begin at a bit address
whose two LSBs are 0s, and so forth.

When a pixel is moved from memory to a general-purpose register, the pixel
is right justified within the register. That is, the LSB of the pixel coincides
with the rightmost bit (bit 0) of the register. Register bits to the left of the
pixel are loaded with Os.

Figure 4-4 illustrates pixel storage in memory. The pixel is located within the
word pointed to by the 26-bit physical address corresponding to bits 4-29 of
the 32-bit logical address of the pixel. The four LSBs of the logical address
specify the displacement of the pixel within the word. When the pixel length
is less than 16, each word contains two or more pixels.

Pixel extraction and insertion is performed by on-chip hardware in a manner
that requires the minimum number of memory cycles. (The operations are
transparent to the programmer.) In the worst case, two memory cycles (a read
followed by a write) are required to insert a pixel of less than 16 bits. Inserting
a 16-bit pixel requires a single write cycle, and extracting a pixel (1 to 16 bits)
requires a single read cycle.

Hardware-Supported Data Structures - Pixels

32-Bit Logical Address)

2 4
26-Bit
—— _—
MeBs Physical Address L8Bs

31 30|28 N 43 0

Memory

Pixel Size

I Word :I

Figure 4-4. Pixel Storage in External Memory

4.2.2 Pixels on the Screen

Figure 4-5 illustrates the mapping of pixels from memory to a display screen.

The screen refresh function outputs pixels in the sequence of ascending pi

xel

addresses. However, the electron beam sweeps from the left edge of the
screen to the right edge during each horizontal scan interval, so pixels appear

on the screen in the opposite order of their representation in memory. That

is,

the least significant pixel (in terms of bit address) appears on the left, and the

most significant pixel appears on the right.

Video Monitor Screen

Word Word Word

Lo I I
Pixel Pixe! Pixel Pixel
4N+3 4N+2 4N+1 4N

fe——Word N+t ——sle——wora N——sfe——Word N-1—|

Figure 4-5. Mapping of Pixels to Monitor Screen

4-7

Hardware-Supported Data Structures - Pixels

4-8

The TMS34010 allows a pixel to be identified either in terms of its XY coor-
dinates on the screen, or in terms of the address of the logical pixel in memory.
These two methods are called XY addressing and linear addressing, re-
spectively.

When XY addressing is used, the origin can be selected to lie in either the
upper left or lower left corner of the screen. The position of the origin is
controlled by the ORG bit in the DPYCTL register. Figure 4-6 a illustrates the
default coordinate system (ORG=0), in which the origin of the two coordinate
axes is located in the upper left corner of the screen. Figure 4-6 b shows the
alternate coordinate system (ORG=1) in which the origin is located in the
lower left corner of the screen.

() Monitor
Soreen
(b) Monitor
Screen
Y
Alternate
Screen
/Oﬂam

X

Figure 4-6. Configurable Screen Origin

Using the default screen origin, Figure 4-7 illustrates the mapping of pixels
from memory to the screen. In Figure 4-7, horizontal movement represents
travel in the X direction on the screen. Vertical movement represents travel in
the Y direction. The depth of the buffer represents the pixel size. The “on-
screen memory” contains the pixels that appear on the screen.

The display memory shown in Figure 4-7 is shown in terms of a “screen for-
mat” rather than the "memory format” used in the memory map shown in
Figure 3-3 on page 3-4. The screen format places the lowest pixel address
at the upper left corner of the memory map. This is the same relative orien-
tation in which pixels appear on the screen. Compare this to the memory
format shown in Figure 3-3, which places the lowest bit address at the lower
right corner of the memory map. This convention is frequently used in in-
dustry to represent the relative location of addresses in memory. In this doc-
ument, assume the standard memory format is used unless the screen format
is indicated.

Figure 4-8 illustrates the mapping of XY coordinates to the on-screen memory.
For simplicity, assume that the screen origin coincides with the upper left

Hardware-Supported Data Structures - Pixels

corner of the display memory. P represents the X extent of the display memory
and N represents the Y extent. Each box represents a pixel within the memory.
The number within the box represents the pixel’s memory location, relative to
the beginning of the on-screen memory. The number in the box is multiplied
by the number of bits per pixel to produce the address offset of the pixel from
the start of the display memory. Since the pixel size is constrained to be a
power of two, the multiply can be replaced by a simple shift operation.

Display Memory
v x
]
| :
Y : On-Screen | Off-8Screen Y
i Memory | Memory Extent
| |
| |
[|
h A
fp——x Extent—bFL Pixel Size
(bits/pixel)
Figure 4-7. Display Memory Dimensions
Increasing
X
X=0 X=1 X=2 X=3 X=pP-2 X=P-1
\
oressing o] o | 1 [2 [s [{p2] P
Y=1 P P+1 | P+2 | P+3 |\ \ 2P-2 | 2P-1
ANAE AR ERIES Doty Memory
> P = X Extent
o] N = Y Extent
(N-2)P[(N-2)P|(N-2)P (N-1)P|(N-1)P
Y=N-2 [(N-2)P| N4 : +2) 5 5 4
(N-1)PKN-1)P
yeN-1 [n-1)p[(0P (NAIP @) [/l ez | Pt

Each box contains a pixel.
The number inside the box
Is the pixel's XY address.

(X extent) x (pixel size)
Differences in 32-bit memory addresses
of two vertically adjacent pixels

Display Pitch

o

Figure 4-8. Display Memory Coordinates

4-9

Hardware-Supported Data Structures - Pixels

4.2.3 Display Pitch

The term display pitch refers to the difference in memory addresses between
two pixels that appear in vertically adjacent positions (one directly above the
other) on the screen. In Figure 4-8, the pitch is calculated as P times the pixel
size, where P is the X extent of the display memory.

The display pitch must be a power of two in order to support XY addressing
of pixels on the screen. Linear addressing of pixels on the screen imposes
fewer restrictions. In particular, the display pitch for linear addressing may be
any value that is a multiple of 16; that is, the four LSBs of the address must
be Os. Features such as automatic window checking are available with XY
addressing, but are not available with linear addressing.

The pitch of a pixel array is the difference in memory addresses of two verti-
cally adjacent pixels in the array. If the array occupies a rectangular area of the
screen, the array pitch is the same as the display pitch.

During a pixel operation such as a PixBIt, the source and destination array
pitches are specified in separate dedicated hardware registers. This facilitates
the transfer of pixel arrays between on-screen and off-screen memory, which
may have different pitches.

A sample display pitch calculation is shown below. In this example, the pixel
size is four bits and the X extent of the pixel display is 640 pixels. However,
since XY addressing and windowing are to be used, the physical memory is
organized so that there are 1024 pixels between successive scan lines. Thus,
the X extent of physical display memory is 1024, and the display pitch is:

(1024 pixels/line) x (4 bits/pixel)
4096 (which is 212)

Display Pitch

Hardware-Supported Data Structures - XY Addressing

4.3 XY Addressing

The TMS34010 allows pixel addresses to be specified in terms of two-
dimensional XY coordinates that correspond to locations on the screen. This
is referred to as XY addressing. XY addressing has several benefits:

{ TMS34010 software can be easily ported from one display configuration
to another. System-dependent details such as the number of bits per
pixel and the X extent of the display memory are transparent to the
software, but are used by the machine to automatically convert the XY
coordinates to the address of a pixel in memory.

[] XY addressing allows you to think in terms of the high-level concept of
XY coordinates rather than in terms of the machine-level mapping of
pixels into memory.

L] XY addressing facilitates such functions as window clipping.

Figure 4-9 illustrates XY addressing format. The XY address is stored in a
32-bit general-purpose register. The X and Y components are each treated
as 16-bit signed integers. The X component resides in the 16 LSBs of the
register, and is right justified to bit O of the register. The Y component occu-
pies the 16 MSBs of the register, and is right justified to bit 16 of the register.
XY coordinates in the range (-32768,-32768) to (+32767,+32767) can be
represented. The clipping window, which identifies the pixels that can be al-
tered during drawing operations, is restricted to positive X and Y coordinate
values, (0,0) to (+32767,+32767). Thus, pixels identified by negative X or
Y coordinates must always lie outside the window.

|"—‘32—’| l‘—Mgss—'l'_‘Lé%e
[orrser] | Y I x|

Figure 4-9. Pixel Addressing in Terms of XY Coordinates

Hardware-Supported Data Structures - XY Addréssing

4.3.1 XY-to-Linear Conversion

The TMS34010 automatically converts a pixel’s XY address to a 32-bit logical
address (linear address) for all instructions that use XY addressing. Three
parameters are used to perform XY -to-linear conversion:

® The logical pixel size (stored in the PSIZE register)
® A pitch conversion factor (stored in the CONVSP or CONVDP registers)
[] An offset defining the XY origin (stored in the OFFSET register)

The TMS34010 uses the following formula to calculate the physical address
associated with the XY address:

Address = [(Y x display pitch) OR (X x pixel size)] + offset

Since the display pitch and pixel size are both powers of two, the calculation
is performed using only shift, OR, and add operations. Window clipping may
be used to detect out-of-bounds (negative) X or Y values before this calcu-
lation is performed.

Linear addresses are formed from XY addresses by simply concatenating the
binary numbers that represent the X and Y coordinate values, as shown in
Figure 4-10. The number of Os to the right of the X component of the address
depends on the number of bits per pixel, and equals logo(pixel size). The
displacement of the Y component within the 32-bit logical address in Figure
4-10 is equal to logp(display pitch). Finally, a 32-bit offset is added to the
address in Figure 4-10 to calculate the address in memory of the pixel at co-
ordinates (X,Y). The offset corresponds to the linear address in memory of the
pixel at (0,0).

A4 A v \4

Y X
MSBs are Os Component Component LSBs are Os

Note: The shift value for the Y component is contained in
CONVSP or CONVDP register, depending on the in-
struction being executed.

Figure 4-10. Concatenation of XY Coordinates in Address

The TMS34010 uses the pitch conversion factors CONVSP and CONVDP
to compute the displacement of the Y component within the address, as
shown in Figure 4-10. The Y component is displaced from bit O of the address
by an amount equal to loga(pitch), which the hardware obtains by inverting
the five LSBs of the appropriate CONVSP or CONVDP register. These values
must be loaded through software before executing an instruction that uses
XY addressing. CONVSP (source address pitch) is used if the XY address
points to a source pixel or pixel array, CONVDP (destination address pitch) is
used if the XY address points to a destination pixel or pixel array. The pixel
size stored in the PSIZE register is used similarly to determine the displace-
ment of the X component, as shown in Figure 4-10.

Hardware-Supported Da;a Structures - XY Addressing

The OFFSET register contains the linear memory address of the pixel located
at coordinates (0,0) on the monitor screen. The OFFSET register is used in
translating XY coordinates into linear addresses, but does not control which
region of the display memory is output to refresh the video screen. It is a vir-
tual screen origin. It allows the coordinate axes of the XY address to be
translated to an arbitrary position in memory. The OFFSET register supports
the use of "window relative” addressing in which the X and Y coordinates are
specified relative to coordinate offsets in the display memaory. The position
and size of a window can be specified arbitrarily. A new offset specified in
terms of XY coordinates can be converted to a linear address using the CVXYL
instruction. CVXYL converts an XY address to a linear address for the purpose
of absolute memory addressing, or to use special features available to in-
structions that use linear addressing. Figure 4-11 illustrates the XY-to-linear
conversion process.

31 16 15 0

a) Original XY address [Y [oooooo| x|
(b} Extract 16 LSBs and

extend with Os [c000000000000000000000] x|
(c) Rotate X left by

log, (pixel size) [oooooooooooooooooooo | X |oo}
(d) Extract 16 MSBs from

original XY address I Y EOOOOOOOOOOOOOOFI
(e) Rotate Y left by sign 00

16 +logy (vertical pitch) of y Y 000000000000

{f) Bitwise logical-OR together | sign
shifted X and Y components | of y
(g) Add offset from B4 to

displacement above to r Memory Address _I
get final memory address

Y X 00

Figure 4-11. Conversion from XY Coordinates to Memory Address

Step a shows the original XY address.
The X component is extracted in step b.

[] In step ¢, the X component is shifted left by logy (pixel size). The result
of step ¢ represents the product of the X component and the pixel size.

® The Y component is extracted in step d.

o In step e, the Y component is rotated left by 16-+loga(display pitch).
The result of step e is Y multiplied by the display pitch.

® In step f, the results of steps ¢ and e are bitwise-ORed to form the dis-
placement in memory of the pixel at (X,Y) from the pixel at the origin.
(] In step G, the offset is added to produce the final memory address.

The example of Figure 4-11 corresponds to a pixel size of four bits and a pitch
of 4,096. The six MSBs of the X half of the XY address (bits 10-15) in Figure
4-11 must be Os to produce a valid memory address. For this example, the

4-13

Hardware-Supported Data Structures - XY Addressing

clipping window should be set to disable writes to pixels having X coordinate
values outside the range 0 to +1023.

Generally, given a display with a pitch of 2", a valid memory address is pro-
duced by the XY translation process shown in Figure 4-11 when only the n
LSBs of the X half of the XY address are nonzero (that is, when the 16-n
MSBs are 0). X values may be in the range -32768 to +32767 before clip-
ping. However, after clipping, the X value should be a positive number in the
range 0 to (Xextent -1), Where Xextent = pitch/pixel size. The TMS34010's
automatic window clipping can be configured to clip pixels lying outside the
window; hence, no software overhead is incurred in clipping. Y values lying
outside the window are clipped in a similar fashion.

Graphics Operations - Pixel Arrays

4.4 Pixel Arrays

A rectangular area of the screen that is DX pixels wide and DY pixels high is
an example of a data structure called a two-dimensional pixel array. The
array contains DX x DY pixels, but can be manipulated by the TMS34010 as
one structure. The TMS34010’s instruction set includes a powerful set of
raster operations, called PixBlts, that manipulate pixel arrays on the screen and
elsewhere in memory.

Figure 4-12 shows a pixel array occupying a rectangular region in display
memory. The DX pixels in each row of the array are packed together into ad-
jacent cells in the display memory. Rows do not generally occupy adjacent
areas of memory, but are separated from each other by a constant displace-
ment called the array pitch. The array pitch is the difference in memory ad-
dresses between the start of one row and the start of the row directly beneath
it. In the Figure 4-12 example, the array pitch is equal to the display pitch.
The product of the array width DX and the pixel size must be less than or equal

to the pitch.
Display Memory

Defautt

St:rltill:lg 2-Dimensional

Address PIXGIANI’lY

Y
AY
fe AX d

AX = Pixels per row of array
AY = Pixels per column of array

Figure 4-12. Pixel Array

A pixel array is specified in terms of its width, height, pitch, and starting ad-
dress. The starting address is the address of the first pixel to be moved during
a PixBlt. The default starting address is simply the base address of the array;
that is, the address of the pixel that has the lowest address in the array.

In Figure 4-12, the XY origin is located in its default position at the upper left
corner of the screen. The default starting address is the address of the pixel
located in the upper left corner of the array. When a PixBlt operation moves
the pixels from a source pixel array to a destination array, the pixels in each
row are moved in sequence from left to right, and the rows are moved in se-
quence from top to bottom.

Graphics Operations - Pixel Arrays

Certain PixBlt operations allow the starting pixel to be specified as one of the
pixels in the other three corners of the array. This feature is provided so that
when the source and destination arrays overlap, the appropriate starting corner
can be selected to ensure that no data is lost by being overwritten during
PixBlt execution. The order in which pixels in the array are moved can be al-
tered to be from right to left or from bottom to top as appropriate to accom-
modate the change in starting corner.

The starting address of a pixel array can be specified either in terms of the XY
coordinates of the starting pixel (XY address), or the memory address of the
starting pixel (linear address):

(] An array whose starting location is specified as an XY address is referred
to as an XY array. In this format, the starting location of the array is
identified by the XY coordinates of the first pixel in the array.

L] A pixel array whose starting location is specified as a memory address
is referred to as a /inear array. In this format, the location of the array is
identified by the memory address of the first pixel (the pixel that has the
lowest bit address) in the array.

The XY array format has two advantages. First, the starting location of the
array is specified in system-independent Cartesian coordinates rather than as
a system-dependent memory address. Second, the TMS34010’s window
checking (which allows it to automatically detect an attempt to write a pixel
inside or outside a specified window) can only be used in conjunction with
XY addressing.

The linear format’'s main advantage is that the array pitch does not have to be
a power of two. This supports a wider variety of memory organizations. Using
XY format, the array pitch is constrained to be a power of two.

The general rules governing array pitch are as follows. When an array is spe-
cified in XY format, the pitch must be a power of two. The pitch for an array
specified in linear format may be any multiple of 16; that is, the four LSBs of
the pitch must be Os. There are a few important exceptions to the second rule
which are discussed below.

For the special case of a PIXBLT B,XY or PIXBLT B,L instruction, the source
pitch may be any value. This feature supports efficient use of memory by al-
lowing adjacent rows of the source array to be packed together with no in-
tervening gaps. The destination pitch must still be a multiple of 16.

Under certain conditions the linear source array specified for a PIXBLT L, XY
or PIXBLT B,XY must have a pitch that is a power of two. This is necessary
when the linear start address for the array has to be adjusted in the Y direction
due to one of the following conditions:

® The source array is automatically preclipped to lie within a rectangular
window.

® One of the lower two corners of the source array (refer to Figure 4-12)
is selected to be the start address.

Graphics Operations - Pixel Arrays

In either case, the start addresses specified for both the source and destination
arrays are automatically adjusted, and for this purpose the conversion factors
specified in the CONVSP and CONVDP registers must be valid.

While PixBlts are useful for moving arrays from one area of the screen to an-
other, they can also be used to move arrays to the screen from other parts of
memory, and vice versa. The pitch for the off-screen pixel array can be spec-
ified independently of the pitch for the on-screen array. This permits off-
screen data to make efficient use of storage, regardless of the display pitch.
On-screen objects may be defined as XY arrays but may be more efficiently
stored as linear arrays in off-screen memory. The PIXBLT instructions support
the transfer of a linear array to an XY array, and vice versa. PIXBLT in-
structions can also be used to rapidly move blocks of non-pixel data (ASCI}
characters, for example) from one location in memory to another.

Hardware-Supported Data Structures

Section b

CPU Registers and Instruction Cache

The TMS34010 has two on-chip general-purpose register files, file A and file
B. Each register file contains 15 32-bit registers. The two files share a 32-bit
hardware stack pointer (SP) that automatically manages the system stack
during interrupts and subroutine calls. The TMS34010 also has two dedicated
32-bit registers - a program counter and a status register. An on-chip cache
holds up to 128 instruction words, and is transparent to software. The CPU
registers and instruction cache are discussed in the following sections:

Section

5.1 General-Purpose Registers
5.2 Status Register
5.3 Program Counterc.cccceveiniecerenmiierneeeecesee e

5.4 Instruction Cachecceiiiiiinicnnir e

5.5 Internal ParalleliSm ..o

In addition to the CPU registers, the TMS34010 contains 28 memory-mapped

registers that are dedicated to 1/0 functions; Section 6 discusses the I/0 reg-
isters.

5-1

CPU Registers and Instruction Cache - General-Purpose Registers

5.1 General-Purpose Registers

The TMS34010 has 30 32-bit general-purpose registers, divided into register
files A and B. In addition, a single stack pointer (SP) is common to both regis-
ter files.

The multiple internal data paths that link the ALU and general-purpose regis-
ters provide single machine state execution of most register-to-register in-
structions. Single-state instructions include add, subtract, Boolean
operations, and shifts (1 to 32 bits). During a single-state instruction, the
following actions occur:

1) Two 32-bit operands are read in parallel from the general-purpose
registers.

2) The ALU performs the specified operation.

3) The 32-bit result is stored in the specified general-purpose register.

The general-purpose registers are dual-ported to permit operands to be read
from two independent registers at the same time.

5.1.1 Register File A

5-2

Fifteen of the 30 general-purpose registers, AO~-A14, form register file A.
These registers can be used for data storage and manipulation. No hard-
ware-dedicated functions are associated with these general-purpose registers.

All register-to-register instructions (except MOVE Rs, Rd) require both regis-
ters to be in the same file. Instructions that manipulate registers AO-A14 can
also manipulate the stack pointer. The SP can be specified in place of an A-
file register in any of these instructions. Figure 5-1 illustrates register file A.

MSB LsSB
bit 31 bit O

A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A1l
A12
A13
Al14
SP Stack Pointer

Figure 5-1. Register File A

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.2 Register File B

Register file B consists of 15 general-purpose registers, BO-B14. All regis-
ter-to-register instructions (except MOVE Rs,Rd) require both registers to be
in the same file. Instructions that manipulate registers BO-B14 can also ma-
nipulate the stack pointer. The SP can be specified in place of a B-file register
in any of these instructions.

Registers BO-B14 can be used for general-purpose functions such as data
storage and manipulation. During PixBIt and other pixel operations, however,
these registers are assigned hardware-dedicated functions.

MSB LSB
bit 31 bit 0
BO SADDR Source address
B1 SPTCH Source pitch
B2 DADDR Destination address
B3 DPTCH Destination pitch
B4 OFFSET Offset
B5 WSTART Window start address
B6 WEND Window end address
B7 DYDX Delta Y/Deita X
B8 COLORO Color 0
B9 COLOR1 Color 1
B10 TEMP or COUNT
B11 TEMP or INC1
B12 TEMP or INC2
B13 TEMP or PATTRN
B14 TEMP
SP Stack Pointer

Figure 5-2. Register File B

As Figure 5-2 shows, registers BO-B9 are used as special-purpose registers
during pixel operations. These registers must be loaded with specific param-
eters before execution of pixel operations. Registers B10-B14 are used as
special-purpose registers for the LINE instruction. During pixel operations,
registers B10-B14 are used for temporary storage; their previous contents are
destroyed. Register functions may vary for individual instructions.

Section 5.1.4 describes the B-file registers in detail.

5-3

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.3 Stack Pointer

5-4

The stack pointer (SP) is a 32-bit register that contains the bit address of the
top of the system stack. The TMS340170 contains only a single SP. However,
this SP can be addressed as a member of either register file, as register A15
or register B15. Any instruction that uses a general-purpose register as an
operand can also use the SP as an operand.

Figure 5-3 illustrates the stack pointer; Section 3.3 (page 3-6) describes stack
operation in detail.

31 43 0

j¢——————28 bits ————»je—4 bits |

Figure 5-3. Stack Pointer Register

The system stack grows in the direction of smaller addresses. During an in-
terrupt, the PC and ST are pushed onto the stack to permit the interrupted
routine to resume execution when interrupt processing is completed. A sub-
routine call saves the PC on the stack to allow the calling routine to resume
execution when subroutine execution is completed.

The stack pointer always points to the value at the top of the stack. Specif-
ically, the SP contains the 32-bit address of the LSB of that value. While the
four LSBs of the SP may be set to an arbitrary value, stack operations execute
more efficiently when the four LSBs are Os. Setting these bits to Os aligns the
stack pointer to 16-bit word boundaries in memory, reducing to two the
number of memory cycles necessary to push or pop the contents of a 32-bit
register.

The SP can be specified as the source or destination operand in any in-
struction that operates on the general-purpose registers. The SP can be ac-
cessed as register 15 in file A or B. Refer to the descriptions of the specific
instructions for details.

CPU Registers and Instruction Cache - General-Purpose Registers

5.1.4 Implied Graphics Operands

Table 5-1 summarizes the B-file register functions during graphics operations.
These registers are referred to as implied graphics operands. Several 1/0 reg-
isters, described in Section 6, are also implied graphics operands.

Table 5-1. B-File Registers Summary

Description

Source Address. Address of the upper left corner of the source pixel array
(lowest pixel address in the array). SADDR is a linear or XY address, depend-
ing on the instruction which uses it.

Source Pitch. Difference in linear start addresses between adjacent rows of
a source pixel array.

Destination Address. Address of the upper left corner of the destination
pixel array (lowest pixel address in the array). DADDR is a linear or XY ad-
dress, depending on the instruction which uses it.

Destination Pitch. Difference in linear start addresses between adjacent
rows of a destination pixel array.

Offset. Linear bit address corresponding to XY -coordinate origin (X=0, Y=0).

Window Start Address. XY address of the upper left corner of the window
(smallest X and Y coordinate values in the array).

Window End Address. XY address of the lower right corner of the window
(largest X and Y coordinate values in the array).

Delta Y/Delta X. The 16 LSBs of this register specify the width (X dimen-
sion) of the destination array. The 16 MSBs specify the height (Y dimension)
of the destination array. If either DY = 0 or DX = 0, then nothing is moved.

Pixel value corresponding to “color 0”. COLORO contains the source
background color to be used during a color-expand operation (PIXBLT B XY
or PIXBLT B,L). The pixel value should be replicated throughout the 16 LSBs
of register B8 (see note below). Non-replicated patterns may be entered for
dithering effects. The 16 MSBs are ignored during the expand operation. For
example, at four bits per pixel, COLORO contains four identical pixel values,
as shown below.

Pixel value corresponding to “color 1”. COLOR1 contains the source
foreground color to be used during a color-expand, fill, or draw-and-advance
operation. The pixel value should be replicated throughout the 16 LSBs of
register B9 (see note below). Nonreplicated patterns may be entered for dith-
ering effects. The 16 MSBs are ignored during the expand operation. For ex-
ample, at four bits per pixel, COLOR1 contains four identical pixel values, as
shown below.

PixBit temporary registers. PixBlt instructions use these registers for
storing temporary values and context information necessary to resume exe-
cution of a partially-completed PixBIt operation in the event of an interrupt.

Reg. Function
BO SADDR
B1 SPTCH
B2 DADDR
B3 DPTCH
B4 OFFSET
B5 WSTART
B6 WEND
B7 DYDX
B8 COLORO
B9 COLOR1

B10-B14
SP SP

Stack pointer. SP contains the bit address of the top of the stack.

Notes: To provide upward compatibility with future versions of the GSP, replicate the pixel value
throughout all 32 bits of COLORO or COLOR?1, as shown.

5-5

BO

Source Address Register

Format

Description

Example

5-6

31 16 15 0

| Y X

or

31 0
Linear Bit Address J

SADDR contains the source array address for PIXBLTs. Generally, SADDR
points to the pixel with the lowest address in the source array. When the
selected starting corner is not the upper left corner, the TMS34010 auto-
matically adjusts SADDR to point to the selected starting corner of the
source array. (For PIXBLT L,L, however, you must manually adjust SADDR
to point to the starting corner. This feature allows you to use PIXBLT L,L
for manipulating pixel arrays with pitches that are not powers of two.)

SADDR is in either XY or linear format. If the first operand of a PIXBLT
instruction is an L (such as PIXBLT L,XY), then SADDR is in linear format.
If the first operand of a PIXBLT instruction is an XY (such as PIXBLT XY,L),
then SADDR is in XY format.

During PIXBLT operations, SADDR is used in linear format. When the
PIXBLT is completed, SADDR points to the starting location of the row that
follows the last row in the array. If a PIXBLT is interrupted, SADDR points
to the next word of pixels to be read.

During LINE operation, SADDR contains the current decision variable va-
lue.

The following instructions use SADDR as an implied operand:

Instruction SADDR Format and Function

LINE Contains d=2b-a, used for the line draw.

PIXBLT B,L Linear address; points to the beginning of a binary source
array (a bit map).

PIXBLT B, XY Linear address; points to the beginning of a binary source
array (a bit map).

PIXBLT L,L Linear address with special requirements when PBH = 1
or PBV = 1. Refer to the PIXBLT L,L for a description of
its unique requirements.

PIXBLT L XY Linear address; points to the beginning of a source array.

PIXBLT XY,L XY address; points to the beginning of a source array.

PIXBLT XY,XY XY address; points to the beginning of a source array.

SADDR .set BO

MOVI 00080015h, SADDR Move XY value 15h,8h
into BO
Move linear value

10AFCh into BO

MOVI O0OO10AFCh, SADDR

N Ne Ne e

Source Pitch Register B1

Format

Description

Example

31 0
Linear Bit Address]

SPTCH specifies the linear difference in the start addresses of adjacent rows
of the source array for PIXBLT and FILL instructions. The TMS34010 uses
the value in SPTCH to move from row to row through the source array.
SPTCH must be an integer multiple of 16 (except for the special cases of
PIXBLT B,L and PIXBLT B,XY). SPTCH is constrained in some cases to
be a power of two; this allows XY addressing and allows SADDR to be
automatically adjusted to point to an alternate starting corner.

The following instructions use SPTCH as an implied operand.

Instruction SPTCH Format and Function

PIXBLT B,L Linear; any value.

PIXBLT B,XY Linear; power of two for windowing, any value otherwise.

PIXBLT L,L Linear; multiple of 16.

PIXBLT L XY Linear; power of two > 16 for windowing or PBV = 1,
multiple of 16 otherwise.

PIXBLT XY,L Linear; power of two > 16.

PIXBLT XY, XY Linear; power of two > 16.

SPTCH .set Bl

MOVI 00001000h, SPTCH Power of two for
PIXBLT XY,L
Any value for

PIXBLT B,L

MOVI OOO1l0AFCh, SPTCH

~e ~e we e

5-7

B2

Destination Address Register

Format

Description

5-8

31 16 156 0
I Y [X |
or .

31 0

I Linear Bit Address I

DADDR contains the destination array address for PIXBLTs. Generally,
DADDR points to the pixel with the lowest address in the destination array.
When the selected starting corner is not the upper left corner, the
TMS34010 automatically adjusts DADDR to point to the selected starting
corner of the destination array. (For PIXBLT L,L, however, you must man-
ually adjust DADDR to point to the starting corner. This feature allows you
to use PIXBLT L,L for manipulating pixel arrays with pitches that are not
powers of two.)

DADDR is also used in conjunction with DYDX to perform a common rec-
tangle function for some instructions (FILL XY, PIXBLT B,XY, PIXBLT
L, XY, and PIXBLT XY, XY, with window option 1). In these cases, DADDR
is set to the starting XY address of the common rectangle that represents
the intersection of the original destination array and the clipping window
indicated by WSTART and WEND. No drawing is performed. If the array
and the window do not intersect, the V bit is not set and the contents of
DADDR are undefined.

DADDR is in either XY or linear format. If the second operand of the
PIXBLT instruction is an L (such as PIXBLT XY,L), then DADDR is in linear
format. If the second operand of the PIXBLT instruction is an XY (such as
PIXBLT XY,XY), then DADDR is in XY format.

If DADDR is specified in XY format, the PIXBLT converts it to the corre-
sponding linear address prior to the start of the pixel array transfer. During
PIXBLT operation, DADDR is maintained in linear format. When the
PIXBLT completes, DADDR points to the linear starting address of the row
following the last row in the array. If a PIXBLT is interrupted, DADDR
points to the next word of pixels to be read.

For the LINE instruction, DADDR contains the XY address of the next point
on the line.

The following instructions use DADDR as an implied operand.

Instruction DADDR Format and Function

FILL L Linear; points to the beginning of the destination array.
FILL XY XY; points to the beginning of the destination array.
LINE XY; points to the current pixel.

PIXBLT B,L Linear; points to the beginning of the destination array.

PIXBLT B, XY XY; points to the beginning of the destination array.

PIXBLT L,L Linear with special requirements when PBH=1 or PBV=1.
Refer to the PIXBLT L,L for a description of its unique re-
quirements.

PIXBLT L XY XY; points to the beginning of the destination array.

PIXBLT XY,L Linear; points to the beginning of the destination array.

PIXBLT XY, XY XY; points to the beginning of the destination array.

Destination Address Register

B2

Example

DADDR

.set
MOVI
MOVI

B2

00080015h, DADDR
00010AFCh, DADDR

N wE s e

Move XY value 15h,8h
into B2

Move linear value
10AFCh into B2

5-9

B3

Destination Pitch Register

Format

Description

Example

31 0
Linear Bit Address ‘

DPTCH specifies the linear difference in the starting memory addresses of
adjacent rows of the destination array for PIXBLT and FILL instructions.
The TMS34010 uses the value in DPTCH to move from row to row through
the destination array. DPTCH must be an integer multiple of 16 (except
for FILL L when DX=1). DPTCH is also constrained in some cases to be
a power of two; this allows XY addressing and allows DADDR to be auto-
matically adjusted to point to an alternate starting corner.

The following instructions use DPTCH as an implied operand.

Instruction DPTCH Format and Function

FILL L Linear; unused when DY=1.

FILL XY Linear; power of two > 16.

PIXBLT B,L Linear; multiple of 16.

PIXBLT B, XY Linear; power of two > 16 for windowing, muitiple of 16
otherwise.

PIXBLT L,L Linear; multiple of 16.

PIXBLT L XY Linear; power of two > 16.

PIXBLT XY,L Linear; power of two us.> 16 for PBV = 1, multiple of 16

otherwise.
PIXBLT XY, XY Linear; power of two > 16.
DPTCH .set B3

MOVI 00001000h, DPTCH ; Power of two for
; PIXBLT XY,L

MOVI O00Ol1lOAFCh, DPTCH ; Any value for

’

; PIXBLT L,L

XY Addressing Offset Register B4

Format

Description

Example

31 0

L Linear Bit Address j

OFFSET contains the finear address of the first pixel in the XY coordinate
space for instructions using XY addressing. This corresponds to the linear
address of the XY origin (X=0,Y=0). This value is used as the memory base
for performing XY to linear address conversions.

OFFSET is always in linear format. It may be placed at any position in the
TMS34010 linear address space and should contain a pixel-aligned value
for proper XY address conversions, transparency, pixel processing, and
plane masking. Instructions that use OFFSET as an implied operand do not
modify the contents of OFFSET.

The following instructions use OFFSET as an implied operand.

Instruction OFFSET Format and Function
CVXYL Rs,Rd Linear address of XY origin
DRAV Rs,Rd Linear address of XY origin
FILL XY Linear address of XY origin
LINE Linear address of XY origin
PIXBLT B, XY Linear address of XY origin
PIXBLT L XY Linear address of XY origin
PIXBLT XY,L Linear address of XY origin
PIXBLT XY, XY Linear address of XY origin

PIXT Rs,Rd.XY Linear address of XY origin
PIXT ARs.XY,Rd Linear address of XY origin
PIXT RsXY,Rd.XY Linear address of XY origin

OFFSET .set B4

MOVI 00042000h, OFFSET ; Linear value on
; pixel boundary

B5

Window Start Address Register

Format

Description

Example

31 16 15 0
| Window start Y Window start X

WSTART specifies the XY address of the least significant pixel contained
in the rectangular destination clipping window. WSTART must be valid for
instructions that use an XY destination address and a window option. The
least significant pixel is the pixel with the lowest address in the array. For
a screen with the ORG bit of the DPYCTL register set to O, this corresponds
to the pixel in the upper left corner of the pixel array.

WSTART may be placed at any position in the positive quadrant of the XY
address space. it describes an inclusive pixel; that is, the pixel at the XY
location contained in WSTART is included in the window. The value in
WSTART is used with WEND, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WSTART is not modified by instruction execution.

The following instructions use WSTART as an implied operand.

Instruction WSTART Format and Function

CPW Rs,Rd XY value of least significant window corner
DRAV Rs,Rd XY value of least significant window corner
FILL XY XY value of least significant window corner
LINE XY value of least significant window corner
PIXBLT B, XY XY value of least significant window corner
PIXBLT L XY XY value of least significant window corner
PIXBLT XY XY XY value of least significant window corner
PIXT Rs,Rd.XY XY value of least significant window corner

PIXT Rs.XY,Rd.XY XY value of least significant window corner

WSTART .set BS

MOVI 00400100h, WSTART ; XY value (256,64)
; stored in WSTART

Window End Address Register B6

Format

Description

Example

31 16 15 0
Window end Y Window end X

WEND specifies the XY address of the most significant pixel contained in
the rectangular destination clipping window. WEND must be valid for in-
structions that use an XY destination address and a window option. The
most significant pixel is the pixel with the highest address in the array. For
a screen with the ORG bit of the DPYCTL register set to 0, this corresponds
to the pixel in the lower right corner of the pixel array.

WEND may be placed at any position in the positive quadrant of the XY
address space. It describes an inclusive pixel; that is, the pixel at the XY
location contained in WEND is included in the window. The value in
WEND is used with WSTART, DADDR, and DYDX to preclip pixels, lines,
and pixel arrays. WEND is not modified by instruction execution.

The following instructions use WEND as an implied operand.

Instruction WEND Format and Function

CPW Rs,Rd XY value of most significant window corner
DRAV Rs,Rd XY value of most significant window corner
FILL XY XY value of most significant window corner
LINE XY value of most significant window corner
PIXBLT B, XY XY value of most significant window corner
PIXBLT L XY XY value of most significant window corner
PIXBLT XY, XY XY value of most significant window corner
PIXT Rs,Rd.XY XY value of most significant window corner

PIXT ARs.XY,RdXY XY value of most significant window corner
WEND .set B6

MOVI 00400100h, WEND ; XY value (256,64) stored
; in WEND

B7

Delta Y/Delta X Register

Format

Description

Example

31 16 15 0
| Delta Y I Delta X J

DYDX specifies the X and Y dimensions of the rectangular destination array
for PIXBLT and FILL instructions. Both the X and Y dimensions are in
pixels; that is, the DX value is number of pixels in width of the array, and
DY is the number of rows of pixels in the destination array.

When the window clipping option is selected, the pixel block dimensions
for the transfer are determined by the relationships between WSTART,
WEND, DADDR, and DYDX. If either the X or Y dimension is O, then the
block is interpreted as having a dimension of 0; no transfer is performed.

The values for DY and DX may range up to the coordinate extent of the
display (up to 65,535, depending on the display pitch and pixel size se-
lected). For window operations, the relationship between DYDX,
WSTART, and WEND is such that DY = Ygn4 - Ygranr + 1 and DX = Xepg
- Xstart + 1. The value in DYDX is used with WSTART, DADDR, and DYDX
to preclip pixels, lines, and pixel arrays.

Most graphics instructions do not modify the contents of DYDX. For FiLL
XY, PIXBLT B,XY, PIXBLT L XY, and PIXBLT XY, XY, with window option
1, however, DYDX is used with DADDR to perform a common rectangle
function. In this case, the instruction sets DYDX to the dimensions of the
common pixel block described by the intersection of the original destination
array and the window identified by WSTART and WEND. No drawing is
performed. If there is no common rectangle, the V bit is not set and the
value of DYDX is indeterminate. See these instructions for further infor-
mation.

The following instructions use DYDX as an implied operand.

Instruction DYDX Format and Function

FILL L Array dimensions in XY format.

FILL XY Array dimensions in XY format; special results when W=1
is selected, as previously noted.

LINE Dimensions of the rectangle described by the line to be
drawn.

PIXBLT B,L Array dimensions in XY format

PIXBLT B,XY Array dimensions in XY format; special results when pick
is selected, as previously noted.

PIXBLT L,L Array dimensions in XY format.

PIXBLT L XY Array dimensions in XY format; special results when pick
is selected, as previously noted.

PIXBLT XY,L Array dimensions in XY format.

PIXBLT XY,XY Array dimensions in XY format; special results when pick
is selected, as previously noted.

This example illustrates the relationship of DYDX to WSTART and WEND.

WSTART .set B5
WEND .set B6
DYDX .set B7

Put WEND into DYDX
Generate (WEND - WSTART)
Increment by 1 in each
dimension

MOVE WEND, DYDX
SUBXY WSTART, DYDX
ADDI 10001h, DYDX

Ne we e we

Background Color Register B8

Format

Description

Example

31 0

Replicated Pixel Value I

COLORO specifies the replacement color for O bits in the source array for
PIXBLT B,L and PIXBLT B,XY instructions. These two instructions trans-
form binary pixel array information to multiple bits per pixel arrays using the
color information in COLOR1 and COLORO. The lower 16 bits of COLORO
are used for the O or background color. There is a direct correspondence
between the alignment of pixels within the COLORO register and pixels
within memory words to be altered. That is, individual pixels within
COLORO are used as they align with destination pixels in the destination
word.

Execution of graphics instructions does not modify COLORO.

To provide upward compatibility with future versions of the GSP, the plane
mask should be replicated through all 32 bits of COLORO.

The following instructions use COLORO as an implied operand.

Instruction COLORO Contents
PIXBLT B,L Background pixel color for color-expanded array
PIXBLT B, XY Background pixel color for color-expanded array

This example is for 4-bit pixels. A pixel vaiue of 5 is replicated throughout
the register.

COLORO .set B8

MOVI 55555555h, COLORO ; store uniform pixel
; value in COLORO

5-16

B9

Foreground Color Register

Format

Description

Example

5-16

31 0

Replicated Pixel Value

COLOR?1 specifies the replacement color for pixels to be altered at the des-
tination pixel or pixel block for FILL, DRAV and LINE instructions.

For PIXBLT B,L and PIXBLT B,XY instructions, COLOR1 specifies the re-
placement color for 1 bits in the source array. These two instructions
transform binary pixel array information to multiple-plane pixel arrays using
color information in COLOR1 and COLORO. There is a direct correspond-
ence between the alignment of pixels within the COLOR1 register and pix-
els within memory words to be altered. That is, individual pixels within
COLOR1 are used as they align with destination pixels in the destination
word.

Execution of graphics instructions does not modify COLOR1.

To provide upward compatibility with future versions of the GSP, the plane
mask should be replicated through all 32 bits of COLOR1.

The following instructions use COLOR1 as an implied operand.

Instruction COLOR1 Contents
DRAV Rs,Rd Pixel color for pixel draw

FILL L Pixel color for filled array

FILL XY Pixel color for filled array

LINE Pixel color for line draw

PiXBLT B,L Foreground pixel color for color-expanded array

PIXBLT B, XY . Foreground pixel color for color-expanded array

This example is for 4-bit pixels. A pixel value of 3 is replicated throughout
the register.

COLOR1 .set B9

MOVI 33333333h, COLOR1 ; Store uniform pixel
; value in COLORL1

Reserved Registers B10-B14

Format 31

L

Various Formats

Description The functions of these registers depend on which instruction uses them:

PIXBLT and FILL instructions use registers B10 through B14 as tem-
porary registers that hold intermediate values.

The LINE instruction uses these registers as implied operands with the
following functions:

- B11 is the INC1 register; it specifies the X and Y increments for
a diagonal step.

- B12 is the INC2 register; it specifies the X and Y increments for
a nondiagonal step.

- B10 is the COUNT register; it specifies the number of pixels to
be drawn in the line.

- B13 is the PATTRN register; it is reserved for future LINE draw
enhancement. It should be set to OFFFFFFFFh before executing
the LINE instruction to ensure software compatibility.

- B14 is a temporary register (TEMP) that holds intermediate va-
lues.

CPU Registers and Instruction Cache - Status Register

5.2 Status Register

The status register (ST) is a special-purpose, 32-bit register that specifies the
processor status. The ST also contains several parameters that specify the
characteristics of two programmable data types, fields O and 1. The ST is ini-
tialized to 00000010h at reset.

Figure 5-4 illustrates the status register. Table 5-2 lists the functions associ-
ated with the status bits. Table 5-3 describes the encoding of the field size
bits in FSO and FS1.

are currently unused. When read, a reserved bit returns the last value
written to it. At reset, all reserved bits are forced to Os.

Figure 5-4. Status Register

Table 5-2. Definition of Bits in Status Register

Bit Field .
No. Name Function
0-4 FSO Field Size 0. Length in bits of first memory data field (see Table 5-3 for values).
5 FEO Field Extend 0. Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.
FEO = O selects zero extension for field 0
FEO = 1 selects sign extension for field 0
6-10 FS1 Field Size 1. Length in bits of second memory data field (see Table 5-3 for values).
11 FE1 Field Extend 1. Bit determines whether field from memory is extended with Os or
with the sign bit when loaded into 32-bit general-purpose register.
FE1 = O selects zero extension for field 1
FE1 = 1 selects sign extension for field 1
21 IE Interrupt Enable. Master interrupt enable/disable bit.
IE = O disables all maskable interrupts
IE = 1 enables all maskable interrupts
25 PBX PixBIt Executing. Indicates upon return from an interrupt that the interrupt oc-
curred between instructions or in the middle of a PIXBLT or FILL instruction.
0 = Indicates interrupt occurred at PIXBLT or FILL instruction boundary
1 = Indicates interrupt occurred in the middle of a PIXBLT or FILL instruction
28 \ Overflow. Set according to instruction execution.
29 z Zero. Set according to instruction execution.
30 C Carry. Set according to instruction execution.
31 N Negative. Set according to instruction execution.
12
20 - Reserved
22-24 d
26-27

CPU Registers and Instruction Cache - Status Register/Program Counter

Table 5-3. Decoding of Field-Size Bits in Status Register

Five FS | Field | Five FS | Field | Five FS | Field | Five FS | Field

Bits Sizet Bits Sizet Bits SizetT Bits Sizet
00001 1 01001 9 10001 17 11001 25
00010 2 01010 10 10010 18 11010 26
00011 3 01011 1" 10011 19 11011 27
00100 4 01100 12 10100 20 11100 28
00101 5 01101 13 10101 21 11101 29
00110 6 01110 14 10110 22 11110 30
00111 7 01111 15 10111 23 11111 31
01000 8 10000 16 11000 24 00000 32

T In bits

5.3 Program Counter

The program counter (PC) is a dedicated 32-bit register that points to the next
instruction word to be executed. Instructions are always aligned on even
16-bit word boundaries, and as shown in Figure 5-5, the four LSBs of the PC
are always Os.

31 430
L “Word Address pooqg
j——— 28 bita——————dj¢-4 bita ¥

Figure 5-5. Program Counter

An instruction consists of one or more instruction words. The first word
contains the opcode for the instruction. Additional words may be required for
immediate data, displacements, or absolute addresses. As each instruction
word is fetched, the PC is incremented by 16 to point to the next instruction
word. The PC contents are replaced during a branch instruction, subroutine
call instruction, return instruction, or interrupt.. Instructions may be categor-
ized according to their effect on the PC, as indicated in Table 5-4.

Table 5-4. Instruction Effects on the PC

Category Description

Non-branch The PC is incremented by 16 at the end of the instruction,
allowing execution to proceed sequentially to the next in-
struction.

Absolute Branch The PC is loaded with an absolute address; the four LSBs

(TRAP, CALL, JAcc)| of the address are set to Os.

Relative Branch The signed displacement (8 or 16 bits) is added to the

(JRcc, DSJxx) current contents of the PC. The signed displacement is
treated as a word displacement; that is, it is shifted left four
bit positions before it is added to the PC.

Indirect Branch The PC is loaded with the register contents. The four LSBs

(JUMP, CALL, are set to Os.

EXGPC)

CPU Registers and Instruction Cache - Instruction Cache

5.4 Instruction Cache

Most program execution time is spent on repeated execution of a few main
procedures or loops. Program execution can be speeded up by placing these
often used code segments in a fast memory. The TMS34010 uses a 256-byte
instruction cache for this purpose.

Only instruction words (memory words that are pointed to by the PC) can be
accessed from the cache. This includes opcodes, immediate operands, dis-
placements, and absolute addresses. Instructions and data may reside in the
same area of memory; therefore, data may occasionally be copied into the in-
struction cache along with instruction words. However, the processor cannot
access data from the cache. All reads and writes of data in memory bypass the
cache.

5.4.1 Cache Hardware

The instruction cache contains 256 bytes of RAM, used to store up to 128
16-bit instruction words. Each instruction word in cache is aligned on an even
word boundary. Figure 5-6 illustrates cache organization.

P
Segment s;\m Address Fags Data Registers
[ccARegstero | [
i 23 » L
H Z
2] 31 & segment 0
5] 5
6]]
7] 7
—— 6 ——
[©6A Register 1] O m _ [
2] 2 orTZ] of secment 12
H I~ owora 37
5] 16 —
8]
7]
o o
S6A R 2 0 m
2]
3 31 L Segment 2
8 Reoho‘n?ty—'
7] J
Used o
- < 0
[SsARegster3_] m Recar —
3 Used
T f Segment 3

Figure 5-6. TMS34010 Instruction Cache

The cache is divided into four 32-word segments. Each cache segment may
contain up to 32 words of a 32-word segment in memory. This memory seg-

5-20

CPU Registers and Instruction Cache - Instruction Cache

ment is a block of 32 contiguous words beginning at an even 32-word
boundary in memory.

Each cache segment is divided into eight subsegments; each subsegment
contains four words. Dividing each segment into subsegments reduces the
number of word fetches required from memory when fewer than 32 words of
a memory segment are used. Each of the four cache segments is associated
with a segment start address (SSA) register. Figure 5-7 shows how an in-
struction word is partitioned into the components used by the cache control
algorithm.

fe 32-Bit Linear Address »

fe
j————23Bts ————3 B!ts[é !o!o!olg

| The four LEBs of an Instruction
word address are always 0.
Instruction word address

within subsegment
Subsegment address

Segment start address
(SSA register)

Figure 5-7. Segment Start Address

The 23 bits of the SSA register correspond to the 23 MSBs of the segment’s
memoty address. These 23 MSBs are common to all eight subsegments within
a segment. The next three bits (bits 6-8) identify one of the eight subseg-
ments. Bits 4 and 5 identify one of the four words contained in a subsegment.
The four LSBs are always Os because instructions are aligned on word boun-
daries.

5.4.2 Cache Replacement Algorithm

When the TMS34010 requests an instruction word from a segment that is not
in the cache, the contents of one of the four cache-resident segments must
be discarded to make room for the segment that contains the requested word.
A modified form of the least-recently-used (LRU) replacement algorithm is
used to select the segment to be discarded.

The LRU segment manager (part of the cache control logic) maintains an LRU
stack to track use of the four segments. The LRU stack contains a queue of
segment numbers, 0 through 3. Each time a segment is accessed, its segment
number is moved to the top of the stack, pushing the other segment numbers
down as necessary to make room at the top. Thus, the number at the top of
the LRU stack identifies the most-recently-used segment and the number at
the bottom identifies the least-recently-used segment.

When a new segment must be loaded into cache, the least-recently-used
segment is discarded. The eight P flags (described in Section 5.4.3) of the
selected segment are set to Os, and the segment’s SSA register is loaded with
the new segment address. After the requested subsegment has been loaded
from memory, its P flag is set to 1, and the requested instruction fetch is al-
lowed to complete.

Following a reset, all P flags in the cache are set to 0 and the four segment
numbers in the LRU stack are stored in numerical order (0-1-2-3).

5-21

CPU Registers and Instruction Cache - Instruction Cache

5.4.3 Cache Operation

When the TMS34010 requests an instruction word, it checks to see if the word
is contained in cache. First, it compares the 23 MSBs of the instruction ad-
dress to the four SSA registers. If a match is found, the processor searches for
the appropriate subsegment. A present (P) flag, associated with each sub-
segment, indicates the presence of a particular subsegment within a cache
segment. P=1 indicates that the requested word is in cache; this is called a
cache hit. If there is no match, or if there is a match and P=0, the word is not
in cache; this is called a cache miss.

5.4.3.1 Cache Hit

The cache contains the requested instruction word. The processor performs
the following actions:

1) A short (one machine state) access cycle reads the instruction word from
cache.

2) The segment number is moved to the top of the LRU stack, pushing the
other three segment numbers toward the bottom of the stack.

Due to pipelining, instruction fetches from the cache frequently overlap com-
pletion of preceding instructions. The overhead due to instruction fetches in
such cases is effectively zero.

5.4.3.2 Cache Miss

5-22

The cache does not contain the instruction word. There are two types of
cache miss - subsegment miss and segment miss.

® Subsegment Miss. The 23 MSBs of the instruction word address
match one of the four SSA registers’ 23 MSBs; that is, the appropriate
segment is in the cache. However, the P flag for the requested subseg-
ment is not set. The processor performs the following actions:

1) The four-word subsegment containing the requested instruction
word is read from local memory into the cache.

2) The segment number is moved to the top of the LRU stack, push-
ing the other three segment numbers toward the bottom of the
stack.

3) The subsegment'’s P flag is set.

4) The instruction word is read from the cache.

° Segment Miss. The instruction word address does not match any of
the SSA registers. The processor performs the following actions:

1) The least-recently-used segment is selected for replacement; the P
flags of all eight subsegments are cleared.

2) The SSA register for the selected segment is loaded with the 23
MSBs of the address of the requested instruction word.

CPU Registers and Instruction Cache - Instruction Cache

3) The four-word subsegment in memory that contains the requested
instruction word is read into the cache. It is placed in the appro-
priate subsegment of the least-recently-used segment. The sub-
segment’s P flag is set to 1.

4) The LRU stack is adjusted by moving the number of the new seg-
ment from the bottom (indicating that it is least recently used) to
the top (indicating that it is most recently used). This pushes the
other three segment numbers in the stack down one position.

5) The instruction word is read from the cache.

5.4.4 Self-Modifying Code

Avoid using self-modifying code; it can cause unpredictable results. When a
program modifies its own instructions, only the copy of the instruction that
resides in external memory is affected. Copies of the instructions that reside
in cache are not modified, and the internal control logic does not attempt to
detect this situation.

5.4.5 Flushing the Cache

Flushing the cache sets it to an initial state which is identical to the state of
the cache following reset. The cache is empty and all 32 P flags are set to O.

The cache is flushed by setting the CF (cache flush) bit in the HSTCTL register
to 1. The CF bit retains the last value loaded until a new value is loaded or
until the TMS34010 is reset. The contents of the cache remain flushed as long
as the CF bit is set to 1. All instruction fetches bypass the cache and are ac-
cessed directly from memory.

Uniess the cache is disabled, normal cache operation will resume when the
CF bitis set to 0.

One use for flushing the cache is to facilitate downloading new code from a
host processor to TMS34010 local memory. The host typically halts the
TMS34010 during downloading by writing a 1 to the HLT bit in the HSTCTL
register. Before allowing the TMS34010 to execute downloaded code, the
host should flush the cache to purge it of stale instructions.

For performance reasons, the CD bit should not remain set to 1 for long peri-
ods. While CD=1, each instruction-word fetch is interpreted as a cache miss,
causing the four words in the subsegment to be fetched from memory.
Though the word pointed to by the PC is executed, none of the four words is
preserved in cache.

5-23

CPU Registers and Instruction Cache - Instruction Cache

5.4.6 Cache Disable

Disabling the cache facilitates program debugging and emulation. The cache
is disabled by setting the CD (cache disable) bit in the CONTROL register to
1. While disabled, the cache is bypassed and all instructions are fetched from
external memory.

CD=1 is similar in effect to CF=1, with several exceptions:

® While CD=1 and CF=0, data already in the cache are protected from
change. When the CD bit is set back to O, the state of the cache prior
to setting the CD bit to 1 is restored. The instructions in the cache are
once again available for execution. If the contents of the cache become
invalid while CD=1, they can be flushed by setting CF to 1.

° While CD=1 and CF=0, each instruction word is fetched from memory
as it is requested, but the other three words in the subsegment are not
fetched. In contrast, if CF=1 and CD=0, all four words in the subseg-
ment that contain the requested instruction word are fetched, although
all but the requested word are immediately discarded.

The CD bit can be manipulated to preserve code in the cache for faster exe-
cution in some time-critical applications. For example, if an inner loop just
exceeds 256 bytes, most of the loop, but not all of it, can fit in the cache.
During execution of the few instructions that are not in the cache, the CD bit
can be set to 1 t0 prevent the code in the cache from being replaced. In this
instance, the loop’s execution speed is improved by eliminating the thrashing
of cache contents. Use this technique carefully; in some cases, it can nega-
tively affect execution speed.

5.4.7 Performance with Cache Enabled versus Cache Disabled

5-24

When the instruction cache is disabled, instruction words are fetched from
external memory. Assuming no wait states are necessary, each instruction
fetch from external memory adds 3 machine cycles to the access time. This is
considerably siower than a program which uses the cache efficiently (when
each word in cache is used several times before it is replaced).

A less efficient use of cache occurs when words in cache are used only once
before replacement. This produces a cache miss every fourth word (even in
this case, operation is usually much better than operation when the cache is
disabled). With the cache enabled, the time penalty due to cache misses in
this case is 2.25 machine states per single-word instruction (compare this to
3 states when the cache is disabled), which is calculated as follows:

® Eight machine cycles are required to load four words into cache from
memory.

° An additional machine state is required to start processing the in-
struction.

° Dividing the total of nine machine states by four instruction words yields
an average of 2.25 machine states per instruction word.

Performance using the cache is nearly always better than performance with the
cache disabled. There are two exceptions. The first occurs when the code
contains so many jumps that only a portion of each subsegment is executed
before control is transferred to another subsegment. The second occurs when

CPU Registers and Instruction Cache - Cache/ Internal Parallelism

an inner loop is larger than the cache, in which case only some portion of the
instructions in the inner loop can be contained in the cache at any time. In this
case, performance may be improved by manipulating the CD bit as described
in Section 5.4.6.

While the cache is disabled, the TMS34010’s internal memory controller
fetches each instruction word from memory only as it is requested by the in-
ternal execution unit. This differs from operation with the cache enabled, in
which case a cache miss causes the entire four-word subsegment containing
the requested instruction word to be loaded into the cache at once.

5.5 Internal Parallelism

Figure 5-8 illustrates the internal data paths associated with TMS34010 pro-
cessor functions. The TMS34010 has a single, logical memory space for sto-
rage of both data and instructions. However, internal parallelism provides the
TMS34010 with the benefits found in architectures which contain separate
data and instruction storage (sometimes referred to as Harvard architectures).
The ability to fetch instructions from cache in parallel with data accesses from
memory greatly enhances execution speed. Hardware parallelism atlows the
following three storage areas to be accessed simultaneously:

[J Instruction cache
® Dual-ported, general-purpose register files A and B
[] External memory

[Tt T T T T T T T T T T T T T T T T T T 1
| Tme34010 :

' |

|

| Instrugtion Instructions '

i Cache I

} |

i |

| |

| |

| |

| |

| |

I |

| |

| General- > Data Memory | External
] :eu cPY | interface | Memory
: |

| |

| |

| |

H |

Figure 5-8. Internal Data Paths

5-25

CPU Registers and Instruction Cache - Internal Parallelism

(&)

(b)

moomw>

Each storage area can also be accessed independently of the other two. This
allows the TMS34010 to perform the following actions in parailel during a pair
of machine states:

® One external memory cycle
° Two instruction fetches from cache
® Four reads and two writes to the general-purpose register files

The need to schedule conflicting internal operations can limit the TMS34010’s
ability to perform these actions in parallel. For example, an instruction which
requires the memory controller to perform a read must finish executing before
the next instruction can be executed.

Figure 5-9 illustrates an example of internal parallelism. Figure 5-9 a shows
three activities occurring in parallel:

® Instructions are fetched from cache.
® Instructions are executed through the general-purpose registers and
the ALU.

] The local memory interface controller performs memory accesses.

Figure 5-9 a represents execution of the code in Figure 5-9 b, which is the
inner loop of a graphics routine. The memory controller accesses pixels while
the ALU fetches instructions from cache. The memory controller completes a
write cycle while execution begins on the next instruction.

le One Iteration »
State: ———d—1-dj-2 D~ 3 -4 -2e- 5 Sl 6 o= 7 -3¢ 8 -0 -Dl¢- 10 Mo~ 11 b 2 He——
MOVE ADD PIXT DD DSJS MOVE
Instruction Fetch: :

Execution:

Memory Interface:

Lt

e— e
Read Cycle Read Write

MOVE #814+,810,0 Get DELTAX

ADD B10,88 Adjust pixel pointer

PIXT *B1,#88 Draw next pixel

ADD B80,B1 Add fleid size

DsJs B1L1 Loop N Times

Figure 5-9. Parallel Operation of Cache, Execution Unit, and Memory Interface

5-26

Section 6

1/0 Registers

The TMS34010’s 28 on-chip I/0 registers control and monitor the following
functions:

® Host interface communications
° Local memory interface control
L Interrupt control

L] Video timing and screen refresh

This section describes these functions, 1/0 register addressing, and then pro-
vides an alphabetical presentation of the /0 registers:

Section
6.1 1/0 Register Addressingcocccceomiininnrenereienieneenireceese s eseeses e
6.2 Latency of Writes to 1/0 Registers
6.3 1/0 Registers SUMMArycccocecerivreceenieereenenn

6.4 Alphabetical Listing of 1/0 RegiSterscccooviriervcrnieniriinnensn e,

6-1

I/0O Registers - Addressing

6.1

6-2

I/0 Register Addressing

TMS34010 I/0 registers occupy addresses CO000000h to CO0001FFh. These
registers can be directly accessed by the TMS34010; they can also be indi-
rectly accessed by a host processor through the host interface registers. For
example, the host processor can indirectly read the contents of the PSIZE re-
gister by loading the address C0000150h into the HSTADRL and HSTADRH
registers, and reading the HSTDATA register. Figure 6-1 illustrates the 1/0
register memory map.

C00001FOh REFCNT DRAM Refresh Count
C00001EOR DPYADR Display Address
C00001D0h VCOUNT Vertical Caunt
C00001COh HCOUNT Horizontal Count
C00001B0h DPYTAP Display Tap Point
C00001AOh

RSO | s

C0000170h

C0000160h PMASK Plane Mask
C0000150h PSIZE Pixel Size

C0000140h CONVDP Destination Conversion Pitch
C0000130h CONVSP Source Conversion Pitch
C0000120h INTPEND Interrupt Pending
C0000110h INTENB Interrupt Enable
C0000100h HSTCTLH Host Control (MSBs)
CO0000F0Oh HSTCTLL Host Control (LSBs)
CO0000ECHh HSTADRH Host Address (MSBs)
C00000D0h HSTADRL Host Address (LSBs)
C00000C0h HSTDATA Host Data
C00000B0Oh CONTROL Control

CO0000AOh DPYINT Display interrupt
C0000090h DPYSTRT Display Start
C0000080h DPYCTL Display Control
C0000070h VTOTAL Vertical Total
C0000060h VSBLNK Vertical Start Blank
C0000050h VEBLNK Vertical End Blank
C0000040h VESYNC Vertical End Sync
C0000030h HTOTAL Horizontal Total
€0000020h HSBLNK Horizontal Start Blank
C0000010h HEBLNK Horizontal End Blank
C0000000h HESYNC Horizontal End Sync

Figure 6-1. I/O Register Memory Map

The two MSBs of an 1/0 register’'s 32-bit internal address are not output on
the TMS34010 pins; however, the address is fully decoded internally. Thus,
the two MSBs of a 32-bit address must both be 1s for an address to be re-
cognized as that of an 1/0 register. When an |/0 register is accessed, the ac-
companying memory cycle (as seen at the TMS34010 pins) is altered so that
the row address strobe is output, but the column address strobe is inhibited.
This is true whether the access is initiated directly by the TMS34010 or indi-
rectly by a host processor.

I/0 Registers - Addressing

An access of any address in the range CO000000h-C00001FFh is decoded as
an access of an on-chip register location, and the column address strobe re-
mains inactive high through the cycle. An access of any location outside this
range is treated as an access of an external memory location.

All 1/0 registers, with one exception, are cleared to O at reset. The exception
is the HLT (halt) bit in the HSTCTL register, which is set depending on the
value at the HCS input pin at the end of the reset pulse:

® If HCS is high at reset, the HLT bit is set to 1
[] If ACS is low at reset, the HLT bit is set to O

6-3

1/0 Registers - Latency of Writes to I/O Registers

6.2 Latency of Writes to I/O Registers

6-4

When an instruction alters the contents of an I/O register, the memory write
cycle that modifies the register may not be completed before execution of the
next instruction begins. If the second instruction relies on the 1/0 register
value loaded by the first instruction, the second instruction may cause incor-
rect results. This type of problem could occur, for example, if a PIXBLT in-
struction were immediately preceded by a MOVE register-to-memory
instruction that modified the CONTROL register. This situation is easily
avoided by ensuring that the write to the 1/0 register is allowed to complete
before the 1/0 register value is used as an implied operand by a subsequent
instruction. For example, by immediately following a write to an I/0 register
with a read of the register, the write is certain to have been completed by the
time subsequent instructions begin execution.

Internal to the TMS34010, the memory controller operates semi-autono-
mously with respect to the execution unit that processes instructions. Paral-
lelism between the execution unit and memory controller may allow a write
initiated by an instruction to be completed only after one or more subsequent
instructions have been executed. An instruction that alters an I/0O register (or
any other address in memory) transmits its request for a write cycle to the
memory controller. Once the request is accepted, the memory controller is
responsible for completing the write cycle; in the meantime, execution of the
next instruction can begin.

A field insertion request submitted to the memory controller can take as many
as five cycles to complete in the case in which a field of 18 or more bits
straddles two word boundaries. This case requires a read-modify-write oper-
ation to one word, a write to a second word, and a read-modify-write opera-
tion to a third word. Although this would be an unusual way of altering
locations in the |/O register file, it represents the theoretical worst case number
of memory cycles for a field insertion.

The start of a pending field-insertion cycle may be delayed by the following
conditions:

Screen-refresh cycle

DRAM-refresh cycle

Host-indirect read or write cycle

Wait states required for slower memories
Hold request from an external device

Any uncertainty as to whether a pending write to memory has been completed
can be eliminated by making use of the fact that only one field insertion re-
quest can be queued at the memory controller at a time. An instruction that
requests a second memory access before the earlier field insertion has been
completed will be forced to wait. Hence, by following an instruction that al-
ters an 1/0 register with an instruction that requests a second memory access
(any memory access), the 1/0 register is certain to have been updated before
the second instruction finishes executing.

I/0 Registers - Summary

6.3 1/0 Registers Summary

Table 6-1 summarizes the I/O registers. Descriptions of the four categories
of 1/0 registers follow the table.

Table 6-1. 1/O Registers Summary

Host Interface Registers
Register Address Description

HSTADRH | COOO00EQh Host interface address, high word. Contains the 16 MSBs of a
32-bit pointer address used by a host processor for indirect accesses of
TMS34010 local memory.

HSTADRL | COO000DOh Host interface address, low word. Contains the 16 LSBs of a 32-bit
pointer address used by a host processor for indirect accesses of
TMS34010 local memory.

HSTCTLH | C0000100h Host interface control, high byte Contains seven programmable bits
that control host interface functions:

NMI (bit8) - Nonmaskable interrupt
NMIM (bit 9) NMI mode bit
INCW (bit 11) ~ Increment pointer address on write

LBL (bit 13) Lower byte last

CF (bit 14) Cache flush

HLT (bit 15) - Halt TMS34010 execution
Bits O through 7 and 10 are reserved

HSTCTLL | COO000FOh Host interface control, low byte. Contains eight programmable bits
that control host interface functions:

INCR (bit 12) — Increment pointer address on read

MSGIN (bits 0-2) - Input message buffer
INTIN (bit 3) - Input interrupt bit
MSGOUT (bits 4-6) — Output message buffer
INTOUT (bit 7) = Qutput interrupt bit

Bits 8 through 15 are reserved

HSTDATA | CO0000COh Host interface data. Buffers data transferred between TMS34010 local
memory and a host processor.

Local Memory Interface Registers
Register Address Description

CONTROLT | C0O0000BOh Memory control. Contains several parameters that control local mem-
ory interface operation:

RM (bit 2) - DRAM refresh mode

RR (bits 3~4) - DRAM refresh rate

T (bit 5) =~ Transparency enable

W (bits 6-7) = Window violation detection mode
PBH (bit 8) = PixBIit horizontal direction

PBV (bit 9) - PixBlt vertical direction

PPOP (bits 10~14) - Pixel processing operation select
CD (bit 15) — Cache disable

Bits 0 and 1 are reserved

CONVDPT | C0000140h Destination pitch conversion factor. Used during XY to linear con-
version of a destination memory address.

CONVSPt | C0000130h Source pitch conversion factor. Used during XY to linear conversion
of a source memory address.

t Implied graphics operands

6-5

I/O Registers - Summary

Table 6-1. 1/0 Registers Summary (Continued)

Local Memory Interface Registers (Continued)

Register Address Description

PMASKT | CO000160h Plane mask register. Selectively enables/disables the various planes
in the bit map of a display system in which each pixel is represented by
multiple bits.

PSIZEt C0000150h Pixel size register. Specifies the pixel size (in bits). Possible pixel
sizes include 1, 2, 4, 8, and 16 bits.

REFCNT | CO0001FOh Refresh count register. Generates the addresses output during DRAM
refresh cycles and counts the intervals between successive DRAM refresh
cycles:

RINTVL (bits 2-7) - Refresh interval counter
ROWADR (bits 8-15) — Row address
Bits O and 1 are reserved

Interrupt Control Registers

Register Address Description

INTENB C0000110h Interrupt enable. Contains the interrupt mask used to selectively
enable/disable the three internal and two external interrupts:

X1E (bit 1) — External interrupt 1 enable
X2E (bit 2) - External interrupt 2 enable
HIE (bit 9) = Host interrupt enable
DIE (bit 10) - Display interrupt enable
WVE (bit 11) - Window violation interrupt enable
Bits 0, 3 through 8, and 12 through 15 are reserved
INTPEND [C0000120h Interrupt pending. Indicates which interrupt requests are currently
pending:
X1P (bit 1) - External interrupt 1 pending
X2P (bit 2) - External interrupt 2 pending
HIP (bit 9) - Host interrupt pending
DIP (bit 10) - Display interrupt pending
WVP (bit 11) — Window violation interrupt pending
Bits 0, 3 through 8, and 12 through 15 are reserved
Video Timing and Screen Refresh Registers

Register Address Description

DPYADR | CO00001EOh Display address. Counts the number of scan lines output between
successive screen refresh cycles and contains the source of the row and
column addresses output during a screen refresh cycle:

LNCNT (bits 0~1) - Scan line counter
SRFADR (bits 2-15) — Screen refresh address
DPYCTL | C0000080h Display control. Contains several parameters that control video timing
signals:
HSD (bit 0) = Horizontal sync direction
DUDATE (bits 2~9) - Display address update
ORG (bit 10) -~ Screen origin select
SRT (bit 11) - VRAM serial-register transfer enable
SRE (bit 12) — Screen refresh enable
DXV (bit 13) — Disable external video
NIL (bit 14) - Noninterlaced video enable
ENV (bit 15) - Enable video
Bit 1 is reserved.

DPYINT | COOOO0AOh Display interrupt. Specifies the next scan line that will cause a display

interrupt request.

t Implied graphics operands

6-6

I/0 Registers - Summary

Table 6-1. 1/0 Registers Summary (Concluded)

Video Timing and Screen Refresh Registers (Continued)

Register Address Description

DPYSTRT | C0000090h Display start address. Provides control of the automatic memory-to-
register cycles necessary to refresh a screen:

LCSTRT (bits 0-1) - Specifies the number of scan lines to
be displayed between screen refreshes
SRSTRT (bits 2-15)— Starting screen-refresh address

DPYTAP | CO0001BOh Display tap point address. Contains a VRAM tap point address output
during shift register transfer cycies.

HCOUNT | C00001CO0h Horizontal count. Counts the number of VCLK periods per horizontal
scan line.

HEBLNK | CO000010h Horizontal end blank. Designates the endpoint for horizontal blanking.

HESYNC | CO000000h Horizontal end sync. Specifies the endpoint of the horizontal sync
interval.

HSBLNK | CO000020h Horizontal start blank. Specifies the starting point of the horizontal
blanking interval.

HTOTAL | CO000030h Horizontal total. Specifies the total number of VCLK periods per hori-
zontal scan line.

VCOUNT | C0O0001DORh Vertical count. Counts the horizontal scan lines in a video display.

VEBLNK | CO000050h Vertical end blank. Specifies the endpoint of the vertical blanking in-
terval.

VESYNC | CO000040h Vertical end sync. Specifies the endpoint of the vertical sync pulse.

VSBLNK | CO000060h Vertical start blank. Specifies the starting point of the vertical blank-
ing interval.

VTOTAL | CO000070h Vertical total. Specifies the value of VCOUNT at which the vertical

sync pulse begins.

6.3.1 Host Interface Registers

Five 1/0 registers are dedicated to host interface communications, allowing the
TMS34010 to:

® Directly transfer status messages or command information
® Indirectly transfer large blocks of data through local memory
L] Receive interrupt requests from a host processor

® Transfer interrupt requests to a host processor

The ability to indirectly transfer large blocks of data makes the host interface
extremely flexible. For example, a host can transfer blocks of commands to the
TMS34010, can halt the TMS34010 temporarily to download a new program
for the TMS34010 to execute, or can read blocks of graphics data generated
by the TMS34010.

The host interface registers occupy five TMS34010 register locations, and are
typically mapped into four consecutive 16-bit locations in the memory or I/0
address space of the host processor. The host processor accesses the

6-7

1/0 Registers - Summary

HSTCTLL and HSTCTLH registers as the eight LSBs and eight MSBs, re-
spectively, of a single location (the HSTCTL register).

The HSTCTL (host control) register controls functions such as the transfer of
interrupt requests and 3-bit status codes between a host processor and the
TMS34010. These requests are typically used by software to coordinate the
transfer of large blocks of data through TMS34010 local memory. The.
HSTCTL register also allows the host to flush the instruction cache, halt
TMS34010 execution, and transmit nonmaskable interrupt requests to the
TMS34010.

The host processor uses the remaining three host interface registers to indi-
rectly access selected data blocks within TMS34010 local memory. The
HSTADRL and HSTADRH registers contain a 32-bit address that points to the
current word location in memory. The HSTDATA register buffers data trans-
ferred to and from the memory under control of the host processor. The host
interface can be programmed to automatically increment the address pointer
following each transfer, providing the host with rapid access to a block of se-
quential locations.

6.3.2 Local Memory Interface Registers

Six of the 1/0 registers support local memory interface functions such as:
® Frequency of DRAM refresh cycles

Type of DRAM refresh cycles

Pixel size

Color plane masking

Various pixel access control parameters

6.3.3 Interrupt Interface Registers

6-8

Two 1/0 registers monitor and mask interrupt requests to the TMS34010.
These include two external and three internal interrupts. External interrupt re-
quests are transmitted to the TMS34010 via input pins TINT1 and TINT2. The
TMS34010 can be programmed to generate an internal interrupt request in
response to any of the following conditions:

(] Window violation - an attempt is made to write a pixel to a location in-
side or outside a specified window, depending on the selected win-
dowing mode.

° Host interrupt — the host processor sets the INTIN interrupt request bit
in the HSTCTL register.

(Display interrupt - the specified line number in a frame is displayed on
the monitor.

A nonmaskable interrupt occurs when the host processor sets the NMI bit in
the HSTCTL host interface register. Reset is controlled by a dedicated pin.

I/O Registers - Summary

6.3.4 Video Timing and Screen Refresh Registers

Fifteen 1/0 registers support video timing and screen refresh functions. The
TMS34010’s on-chip CRT timing generator creates the sync and bilanking
signals used to drive the CRT monitor in a bit-mapped display system. The
timing of these signals can be controlied through the appropriate 1/0O registers,
allowing the TMS34010 to support various screen resolutions and interlaced
or noninterlaced video.

The TMS34010 directly supports VRAMs (such as the TMS4461) by gener-
ating the memory-to-register cycles necessary to refresh the screen of a CRT
monitor. Programmable features include the locations in memory to be dis-
played on the monitor, as well as the number of horizontal scan lines displayed
between individual screen-refresh cycles.

The TMS34010 can optionally be programmed to synchronize to externally
generated sync signals. This permits TMS34010-created graphics images to
be superimposed upon externally-created images. This external sync mode
can also be used to synchronize the video timing of two or more TMS34010
devices in a multiple-TMS34010 display system.

6-9

1/0 Registers - Alphabetical Listing

6.4 Alphabetical Listing of 1/0 Registers

6-10

The remainder of this section describes the I/O registers individually; they are
listed in alphabetical order. Fields within each register are identified and
functions associated with each register are discussed.

Bits within 1/0 registers that are identified as reserved are not used by the
TMS34010. When read, a reserved bit returns the last value written to it. No
control function, however, is affected by this value. All reserved bits are
loaded with Os at reset. A good software practice is to maintain Os in these
bits.

Memory Control Register CONTROL

Address

Fields

Description

C00000BOh
16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[co] PPOP fPBvipBH| w | T | RR [RM] reserved|
Bits Name Function
0-1| Reserved Not used
2| RM DRAM refresh mode
3-4| RR DRAM refresh rate
5| T Pixel transparency enable
6-71 W Window violation detection mode
8| PBH PixBlt horizontal direction
9| PBV PixBlt vertical direction
10-14| PPOP Pixel processing operation select
15| CD Instruction cache disable

The CONTROL register contains several control parameters used to config-
ure local memory interface operation.

RM (DRAM refresh mode, bit 2)

The RM bit selects the type of DRAM refresh cycle to be performed. De-
pending on the value of this bit, the TMS34010 performs each DRAM-
refresh cycle as either a RAS-only cycle or as a CAS-before-RAS cycle.
DRAMs and VRAMs that rely on the TMS34010 to generate an 8-bit row
address during a refresh cycle typically use the RAS-only refresh cycle, while
those that generate their own 9-bit row address internally use the CAS-be-
fore-RAS refresh cycle.

RM Description
0 Selects RAS-only refresh cycle
1 Selects CAS-before-RAS refresh cycle

RR (DRAM refresh rate, bits 3 and 4)

The RR field controls the frequency of DRAM refresh cycles. The
TMS34010 automatically generates DRAM refresh cycles at regular inter-
vals. The duration of the interval is specified by the value of RR. If required,
DRAM refreshing can be disabled by setting RR to the appropriate value.

The initial value of RR after reset is 002. No DRAM refresh cycles are per-
formed while the TMS34010 RESET signal is active.

CONTROL

Memory Control Register

RR Description

00 Refresh every 32 local clock periods
01 Refresh every 64 local clock periods
10 Reserved code

11 No DRAM refreshing

T (Pixel transparency, bit 5)

The T bit enables or disables the pixel attribute of transparency. When
transparency is enabled, a value of O resulting from a pixel operation on
source and destination pixels is inhibited from overwriting the destination
pixel. In the case of a replace operation (PPOP = 0), a source pixel value
of 0 is inhibited from overwriting the destination pixel. Disabling transpar-
ency allows a pixel value of 0 to be written to the destination.

T Effect
0 Disable transparency
1 Enable transparency

W (Window checking, bits 6 and 7)

The W field selects the course of action to be taken when a pixel operation
will cause a pixel to be written to a location lying either inside or outside the
specified window limits. Window checking applies only to attempts to write
to pixel locations defined by XY addresses; writes to pixel locations defined
by linear memory addresses are not affected. Nonpixel data writes are not
affected.

w Description

00 No pixel writes are inhibited, and no interrupt requests are generated

01 Generate interrupt request on attempt to write to pixe! lying inside window,
and inhibit all pixel writes

10 Generate interrupt request on attempt to write to pixel lying outside window
11 Inhibit pixel writes outside window, but do not request interrupt

A request for a window violation interrupt can occur when W=01, or
W=105. The WVP bit in the INTPEND register is set to 1 to indicate that a
window violation has occurred. This in turn causes the TMS34010 to be
interrupted if the WVE bit in the INTENB register and the status |E bit are
setto 1.

PBH (PixBlt horizontal direction, bit 8)

The PBH bit determines the horizontal direction (increasing X or decreasing
X) of pixel processing for the following instructions:

- PIXBLT XY, XY
= PIXBLT LXY

Memory Control Register CONTROL

- PIXBLT XY.,L
- PIXBLT L,L
PBH Effect
0 Increment X (move from left to right)
1 Decrement X (move from right to left)

® PBV (PixBlt vertical direction, bit 9)

The PBV bit determines the vertical direction (increasing Y or decreasing
Y) of pixel processing for the following instructions:

- PIXBLT XY XY

- PIXBLT LXY
- PIXBLT XY,L
- PIXBLT L,L
PBV Effectt
0 Increment Y (move from top to bottom)
1 Decrement Y (move from bottom to top)

T Default screen origin assumed

(] PPOP (Pixel processing operation, bits 10-14)

The PPOP field selects the operation to be performed on the source and
destination pixels during a pixel operation. The foliowing 16 PPOP codes
perform Boolean operations on pixels of 1, 2, 4, 8, and 16 bits.

PPOP Operation Description

00000 S — D | Replace destination with source
00001 S AND D = D | AND source with destination
00010 | S AND D — D | AND source with NOT destination
00011 0 — D | Replace destination with Os
00100 S OR D = D | OR source with NOT destination
00101 | S XNOR D = D | XNOR source with destination
00110 D = D | Negate destination

00111 S NOR D — D | NOR source with destination
01000 S OR D — D | OR source with destination

01001 D = D | No change in destinationT

01010 S XOR D — D | XOR source with destination
01011 SAND D = D | AND NOT source with destination
01100 1 = D] Replace destination with 1s
01101 SORD — D | OR NOT source with destination
01110 | S NAND D = D | NAND source with destination
01111 S = D | Replace destination with NOT source

T Although the destination array is not changed by this operation,
memory cycles still occur.

The following six PPOP codes perform arithmetic operations on 4-, 8-, and
16-bit pixels (but not 1 or 2 bits).

CONTROL

Memory Control Register

PPOP Operation Description

10000 D + S = D| Add source to destination
10001 jADDS(D,S) = D| Add S to D with saturation
10010 D -S — D| Subtract source from destination

10011 | SUBS(D,S) —» D| Subtract S from D with saturation
10100 | MAX(D,S) = D} Maximum of source and destination
10101 MIN(D,S) = D| Minimum of source and destination

PPOP codes 101105 through 11111, are reserved.

Standard addition and subtraction allow the result of the operation to over-
flow. However, add-with-saturation and subtract-with-saturation (ADDS
and SUBS) do not allow overflow or underflow. In cases in which addition
would allow an overflow, ADDS produces a result whose value is all 1s. In
cases in which subtraction would allow an underflow, SUBS produces a
result whose value is all Os.

CD (Cache disable, bit 15)

The CD bit selectively enables or disables the instruction cache.

CcD Effect
0 Enable instruction cache
1 Disable instruction cache

When the cache is disabled, cache contents (including data, P flags, SSA
registers, and so on) remain undisturbed. While the cache remains disabled,
all instructions are fetched from memory rather than cache. When the cache
is subsequently enabled, its previous state (before it was disabled) is re-
stored. The instructions retained within the cache are once again available
for execution.

Destination Pitch Conversion Factor CONVDP

Address

Description

C0000140h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[CONVDP |

CONVDP is a full 16-bit register that contains a control parameter used
during execution of a pixel operation instruction. CONVDP is used with:

® XY addressing
® Window clipping

® PIXBLTs or FILLS (except for PIXBLT L,L) that process pixels from
the bottom of the array to the top (PBV=1)

CONVDP is calculated as the result of an LMO instruction whose input
operand is the destination pitch value in register B3 (DPTCH). The fol-
lowing assembly code calculates the CONVDP value.

LMO B3,A0 ; Convert DPTCH value
MOVE AQ,@CONVDP,0 ; Place result in CONVDP register

In this example, AQ is used as a scratch register. Constant CONVDP has
the value 0C0000140h, and the size of Field 0 is 16 bits.

TMS34010 internal hardware uses the CONVDP value during XY -to-linear
conversion of a destination address. PIXBLT and FILL instructions which
specify the destination address in XY format use the DPTCH and CONVDP
values to convert the XY coordinates to a linear memory address before
actually beginning the pixel block move. During a PIXBLT or FILL in-
struction that requires preclipping of the destination array in the Y direction,
the TMS34010 uses the CONVDP value to calculate the effect of the
clipped starting Y coordinate on the starting linear address of the destina-
tion array. When a PIXBLT instruction’s starting Y coordinate is specified
to lie in one of the lower two corners of the destination array (when
PBV=1), the TMS34010 uses CONVDP to calculate the linear address
corresponding to the specified starting coordinates.

The value contained in the five LSBs of CONVDP should be the 1s com-
plement of logo(DPTCH). When an XY address is specified for the desti-
nation, DPTCH must be a power of two; thus, log2(DPTCH) is an integer.
During XY-to-linear conversion, the product of the Y value and the desti-
nation pitch is calculated by shifting Y left by loga(DPTCH).

One instruction, the PIXBLT XY,L instruction, specifies the destination ad-
dress in linear format but also requires DPTCH to be a power of two. This
restriction is necessary when the PBV bit is set to 1.

CONVSP

Source Pitch Conversion Factor

Address

Description

C0000130h

16 14 13 12 11 10 9 8 7 6 & 4 3 2 1 0
| CONVSP |

CONVSP is a full 16-bit register that contains a control parameter used
during execution of a pixel operation instruction. CONVSP is used with:

L XY addressing
® Window clipping

L] PIXBLTs or FILLS (except for PIXBLT L,L) that process pixels from
the bottom of the array to the top (PBV=1)

CONVSP is calculated as the result of an LMO instruction whose input
operand is the source pitch value in register B1 (SPTCH). The following
assembly code calculates the CONVSP value

LMO B1,A0 ; Convert SPTCH value
MOVE AO,@CONVSP ; Place result in CONVSP register

In this example, AQ is used as a scratch register. Constant CONVSP has the
value 0C0000130h, and the size of Field 0 is 16 bits.

TMS34010 internal hardware uses the CONVSP value during XY-to-linear
conversion of a source address. PIXBLT and FILL instructions which spe-
cify the source address in XY format use the SPTCH and CONVSP values
to convert the XY coordinates to a linear memory address before actually
beginning the pixel block move. During a PIXBLT or FILL instruction that
requires preclipping of the destination array in the Y direction, the starting
source address is modified to accommodate the resulting changes to the
starting destination address. When a PIXBLT instruction’s starting Y coor-
dinate is specified to fie in one of the lower two corners of the destination
array (when PBV=1), the TMS34010 uses CONVSP to calculate the linear
address at the corresponding corner of the source array.

The value contained in the five LSBs of CONVSP should be the 1s com-
plement of log2(SPTCH). When an XY address is specified for the source,
SPTCH must be a power of two; thus, logo(SPTCH) is an integer. During
XY -to-linear conversion, the product of the Y value and the source pitch is
calculated by shifting Y left by logo (SPTCH).

Two instructions that specify the source address in linear format also require
SPTCH to be a power of two. This is necessary when window clipping is
required during execution of either of the following instructions:

(PIXBLT B XY
L] PIXBLT L XY

It is also necessary when either of these two instructions is executed and
the PBYV bit in the CONTROL register is set to 1. If PBV=0 and window
clipping is disabled, or if window clipping is enabled but the specified array
does not require preclipping in the Y dimension, CONVSP is not used, and
SPTCH is not required to be a power of two.

Display Address Register DPYADR

Address

Fields

Description

CO0001EOh
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[SRFADR | LNCNT |
Bits Name Function
01 LNCNT Scan line counter
2-15 | SRFADR Screen refresh address

The 16-bit DPYADR register contains two separate counters that control
the generation of screen-refresh cycles. A screen-refresh cycle transfers the
video data for a new scan line to the VRAMs’ serial data registers.

LNCNT (Scan line counter, bits 0 and 1)

LNCNT counts the number of scan lines output to the screen between suc-
cessive screen-refresh cycles. Providing explicit control over the line count
permits the implementation of systems that do not reload the VRAMS' in-
ternal serial data register on every horizontal scan line. The two-bit LNCNT
field is loaded from the two-bit LCSTRT field of the DPYSTRT register at
the end of each screen-refresh cycle. The value loaded determines whether
the next screen-refresh cycle occurs after 1, 2, 3 or 4 scan lines:

- When LCSTRT = 0, a screen-refresh cycle occurs after every line.
- When LCSTRT = 1, 2 or 3, a screen-refresh cycle occurs after every
2, 3 or 4 lines, respectively.

SRFADR (Screen refresh address, bits 2-15)

SRFADR is the source of the row and column addresses output during a
screen-refresh cycle. The 14 bits of SRFADR are output as logical address
bits 10-23 during screen-refresh cycles. During row address time,
DPYADR4-DPYADR15 are output on LADO-LAD11, and Os are output on
the remaining LAD pins (except as modified by the contents of the DPYTAP
register). During column address time, DPYADR2-DPYADR?7 are output
on LAD6-LAD11 and Os are output on the remaining LAD lines. Following
the completion of each screen-refresh cycle, the value in SRFADR is dec-
remented by the amount indicated in the DUDATE field of the DPYCTL re-
gister.

The following diagrams illustrate the mapping of bits to LADO-LAD15 from

1) The logical address as seen by the programmer and
2) The bits of the DPYADR register

The bits of a 32-bit logical address are numbered 0 to 31, beginning with
the LSB. The 14 MSBs of DPYADR, shown in Figure 6-2, are output as
logical address bits 10-23 during a screen-refresh cycle. DPYADR2 corre-
sponds to logical address bit 10, DPYADRS3 corresponds to logical address
bit 11, and so on.

DPYADR

Display Address Register

15 14 13 12 11 10 9 8 7 6 5 4 8 2 1 0
DPYADR | SREADR JINGNT]
| :
Logloal 123 22 21 20 16 18 17 18 15 14 13 12 11 10!

Figure 6-2. Correlation Between SRFADR and Logical Address
Bits

Figure 6-3 shows the mapping of logical addresses to LADO-LAD15 during
the row and column address times of the cycle. The symbol xx indicates
status information output with the row and column addresses.

LAD Pin Number

15/14l13[12)11)10} 9| 8] 7]6]|5|a}3]2|1]0

opice Rowe xx|ee|zsl24l23l22]21(20f1l18]171615]1413]12| Row

. A_ddress
e asponding 1s1413jr2f11fio{a |8 | 7|6 |5]|a | T™°
T
A:,g'::;sc,;’i';;'““ xxxxf20l28l27)141312)11}10l 9 | 8| 7]6 5] 4] cotumn

Address

Corresponding Time
DPYADR bits 716(5|4]3|2

Figure 6-3. Correlation Between DPYADR Bits and Row/Column
Addresses

A board designer typically selects eight consecutive address lines from
LADO-LAD11 to connect to the multiplexed address inputs of the VRAMs.
For example, by selecting the eight lines LAD2-LAD9, bits 14-21 of the
logical address become the row address bits output to the RAMs, and bits
6-13 of the logical address become the column address bits. This means
that during a screen-refresh cycle, bits 6-13 of DPYADR become the row
address bits output to the RAMs, and bits 4-5 of DPYADR become the two
MSBs of the tap point address.

Display Control Register DPYCTL

Address

Bit

Assignments

Fields

Description

C0000080h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[env] NiL[Dxv]sRE[sRT[ORG] DUDATE | Res |HSD|
Bits Name Function
0| HSD Horizontal sync direction
1| Reserved Not used
2-9{ DUDATE Display address update
10| ORG Screen origin select
11| SRT Shift register transfer enable
12| SRE Screen refresh enable
13| DXV Disable external video
141 NIL) Noninterlaced video enable
15| ENV Enable video

The DPYCTL register contains several parameters that control video timing
signals and serial-register transfer cycles using VRAMs.

HSD (Horizontal sync direction, bit 0)

The HSD bit controls the direction (input or output) of the HSYNC (hori-
zontal sync) pin when the TMS34010 is in external video mode (DXV=0).
If HSD=0, HSYNC is configured as an input, the same as VSYNC. In this
case, the on-chip horizontal sync interval begins when either:

— The start of the external horizontal sync pulse input at the HSYNC pin

is detected, or
- HCOUNT = HTOTAL,

whichever condition occurs first. VSYNC and HSYNC are configured as in-
puts or outputs according to the values of the HSD and DXV bits:

HSD DXV | HSYNC VSYNC
0 0 Input input
0 1 Output Output
1 0 Output Input
1 1 Undefined

When VSYNC and HSYNC are both configured as inputs, the on-chip vertical
sync interval begins when any of the following conditions occur:

— The start of the external vertical sync pulse input at the VSYNC pin is
detected, or

- VCOUNT=VTOTAL, and the start of the horizontal sync pulse input
at the HSYNC pin is detected, or

- VCOUNT=VTOTAL and HCOUNT=HTOTAL.

6-19

DPYCTL

Display Control Register

6-20

When VSYNC is an input and HSYNC is an output, the vertical sync interval
begins when either the first or third of the listed conditions occurs.

DUDATE (Display update amount, bits 2-9)

The DUDATE field indicates the amount by which the SRFADR field in the
DPYADR register is incremented (if ORG=0) or decremented (ORG=1)
following completion of each memory-to-register cycle used to refresh the
screen. DUDATE is loaded with a value containing seven Os and a single
1. The 1 indicates the bit position at which DPYADR is to be incremented
(or decremented if ORG=1).

DUDATE | '"Cfgment

00000000 0
00000001 1
00000010 2
00000100 4
00001000 8
00010000 16

32

64

00100000
01000000
10000000 128

The increment size is undefined when more than one bit in the DUDATE
field is a 1. When interlaced scan mode is enabled, SRFADR is increment-
ed/decremented by half the value indicated in DUDATE at the start of a
vertical blanking interval preceding the start of an even field, just after
DPYADR2-DPYADR15 have been loaded from DPYSTRT2-DPYSTRT15.

For noninterlaced scanning, DUDATE is programmed to increment the
screen address by one scan line. For interlaced scanning, DUDATE is pro-
grammed to increment the screen address by two scan lines. Larger incre-
ments are typically not used since screen-refresh cycles do not occur more
often than once per active scan line.

ORG (Screen origin select, bit 10)

The ORG bit controls the origin of the screen coordinate system.

ORG Effect
0 XY coordinate origin located in upper left corner of screen

1 XY coordinate origin located in lower left corner of screen

If ORG=0 then DPYADR is updated by being incremented by the value in
the DUDATE field. If ORG=1 then DPYADR is updated by being decre-
mented by the value in the DUDATE field. Unless explicitly stated other-
wise, the discussion in this document assumes that the default origin
(ORG=0) is used.

Display Control Register DPYCTL

® SRT (Shift-register-transfer enable, bit 11)

The SRT bit enables conversion of an ordinary pixel access into a VRAM
serial-register transfer cycle.

SRT Effect
0 Pixel access cycles occur normally
1 Pixel access cycles are converted into
VRAM shift-register-transfer cycles

The TMS34010 instruction set includes several instructions (DRAV, PIXT,
LINE, FILL, and PIXBLT) that operate specifically on pixels. By default,
SRT=0 and memory accesses performed during accesses of pixel data are
the usual memory read and write cycles. When SRT=1, however, accesses
of pixel data are converted to shift-register-transfer cycles:

- A pixel read cycle is converted to a memory-to-register cycle
- A pixel write cycle is converted to a register-to-memory cycle

This register-transfer cycle is performed under explicit program control, as
opposed to the screen-refresh cycles enabled by the SRE bit, which are au-
tomatically generated at regular intervals.

Uses of the SRT bit include bulk initialization of the entire VRAM array; the
entire screen can be cleared to a specified background color in only 256
memory cycles. (While the TMS4461 has this capability, not all VRAMs
support this function.) Only pixel accesses are affected by the state of the
SRT bit. Instruction fetches and non-pixel data accesses are not altered in
any way.

L] SRE (Screen-refresh enable, bit 12)

The SRE bit enables automatic screen refreshing. Screen refreshes are per-
formed by means of the VRAM memory-to-register cycles which the
TMS34010 performs automatically during selected horizontal blanking in-
tervals. The frequency of screen-refresh cycles and the generation of the
addresses output during these cycles are programmed by means of the
DPYSTRT and DPYCTL registers.

SRE Effect
0 Disable screen refresh
1 Enable screen refresh

Changing the value of the SRE bit affects screen refreshes with the start of
the next horizontal blanking interval. When SRE changes from 0 to 1, the
first screen-refresh cycle occurs at the start of the next horizontal blanking
level. When SRE changes from 1 to O, screen-refresh cycles are disabled
beginning at the start of the next horizontal blanking level.

6-21

DPYCTL

Display Control Register

6-22

DXV (Disable external video, bit 13)

The DXV bit selects between internally generated or externally generated
video timing.

DXV Effect
0 Selects external video source

1 Selects internally generated video timing

When DXV=0, the TMS34010 video timing circuitry is programmed to lock
onto an external video source. The VSYNC pin is configured as an input and
is connected to an external vertical sync signal. If HSD=0, HSYNC is also
configured as an input and is connected to an external horizontal sync sig-
nal.

When DXV=1, the TMS34010 generates its own video timing, according to
the values loaded into the video timing registers. The HSYNC and VSYNC
pins are configured as outputs, and provide the horizontal and vertical sync
signals required to drive the video monitor.

NIL (Noninterlaced video enable, bit 14)

The NIL bit selects between an interlaced or a noninterlaced display. The
video timing signals output by the TMS34010 are modified according to this
selection. The timing differences between interlaced and noninterlaced
displays are described in Section 9.

NIL Effect
0 Selects interlaced video timing

1 Selects noninterlaced video timing

ENV (Enable video, bit 15)

The ENV bit enables or disables the video display. The display remains
blanked when ENV=0. During this time, the signal output at the BLANK pin
is forced to remain at its active-low level throughout the frame, and setting
of the DIP (display interrupt) bit in the INTPEND register is inhibited. (If
DIP is already set at the time the ENV is changed from 1 to 0, DIP remains
set until explicitly cleared.) When ENV=1, the video display is enabled. The
BLANK output signal is controlied according to the parameters contained in
the video timing registers, and the DIP bit becomes set when the condition
VCOUNT = DPYINT occurs.

ENV Effect
0 Blank entire screen
1 Enable video

Display Interrupt Register DPYINT

Address

Description

CO0000AOh

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| DPYINT |

The DPYINT register designates the next scan line at which a display in-
terrupt will be requested. This register facilitates the coordination of soft-
ware activity with the refreshing of selected horizontal lines on the screen
of a video monitor.

The contents of DPYINT are compared to the VCOUNT register. When
VCOUNT = DPYINT, a display interrupt is requested and the DIP bit in the
INTPEND register is set to 1. This coincides with the start of the horizontal
blanking interval that marks the end of the line designated by the value
contained in DPYINT.

For split-screen applications, a new value can be loaded into the DPYADR
register immediately following detection of the O-to-1 transition of DIP.
The new DPYADR value will not affect the line that immediately follows the
end of the current horizontal blanking interval, but will affect the next line.
The details of this timing are as follows. A screen-refresh cycle may be
scheduled to occur at the start of the same horizontal blanking interval
during which DIP becomes set. At the end of the screen-refresh cycle, the
screen-refresh address in the DPYADR register will be automatically incre-
mented. Requests for screen-refresh cycles have a higher priority than re-
quests for cycles initiated by the on-chip processor. Hence, if the processor
loads a new value into DPYADR immediately following detection of DIP’s
transition from O to 1, the value will become the address used for the next
screen-refresh cycle, which cannot occur before the next horizontal blank-
ing interval. Between the time that DIP becomes set to 1 and the com-
pletion of the next screen-refresh cycle at least one full scan line later, the
DPYADR register is guaranteed not to be incremented. Its contents will
change during this interval only if it is loaded with a new value under ex-
plicit program control. The display interrupt is disabled when the ENV bit
in the DPYCTL register is 0.

6-23

DPYSTRT Display Start Address Register

Address C0000090h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| SRSTRT | LcsTRT|
Fields Bits | Name Function

01 LCSTRT Starting line count
2-15 | SRSTRT Starting screen-refresh address

Description The DPYSTRT register contains two parameters that control the automatic
memory-to-register cycles necessary to refresh the screen.

[] LCSTRT (Starting line count, bits 0 and 1)

LCSTRT is a two-bit code designating the number of scan lines to be dis-
played between screen refreshes.

Scan Lines
LCSTRT Between
Value Refresh
Cycles
00 1
01 2
10 3
11 4

LCSTRT is loaded into the LNCNT field of the DPYADR register at the end
of each screen-refresh cycle. LCSTRT is also loaded into LNCNT at the start
of the last horizontal blanking interval preceding the first active scan line of
a new frame.

[SRSTRT (Starting screen-refresh address, bits 2-15)

The 14-bit SRSTRT field contains the starting address loaded into the
DPYADR register at the start of each frame. Its value identifies the start of
the region of the graphics bit map to be displayed on the screen. SRSTRT
is loaded into the SRFADR field of the DPYADR register at the beginning
of each vertical blanking interval. (Loading occurs coincides with the start
of the horizontal blanking interval at the end of the last active scan line in
the frame.)

The sense of the SRSTRT value depends on the value of the ORG (origin
select) bit in the DPYCTL register. When ORG=0, SRSTRT is loaded with
the 1’s complement of the starting address. When ORG=1, SRSTRT is
loaded with the unmodified starting address. Regardless of the value of the
ORG bit, the starting address points to the location in memory of the first
pixel output to the screen during each frame. For a typica! CRT display, the
first pixel of each frame is output to the top left corner of the screen. Refer
to the description of the DPYADR register for more information on the
generation of screen-refresh addresses.

6-24

Display Tap Point Address Register DPYTAP

Address

Fields

Description

C00001B0h
1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[Reserved | DPYTAP |
Bits Name Function

0-13 | DPYTAP Display tap point address
14-15| Reserved Not used

The DPYTAP register contains a VRAM tap point address output during a
screen-refresh (memory-to-register) cycle. (The contents of DPYTAP are
not output during a serial-register transfer initiated under program control
while the SRT bit in the DPYCTL register is set to 1.) During a screen-
refresh cycle, the 16 bits of the DPYTAP register are bitwise-ORed with the
value output at the LADO-LAD15 pins during the column address time.
DPYTAP bit 0 is ORed with LADO, DPYTAP bit 1 is ORed with LAD1, and
so on. This means that the column address output during the cycle is the
OR of bits 2-7 of DPYADR and bits 0-15 of DPYTAP.

One application of the DPYTAP register is to permit horizontal panning of
the screen over a frame buffer that is wider than the screen. A DPYTAP
value of O locates the screea at its leftmost position within the frame buffer.
Incrementing DPYTAP causes the display to pan to the right through the
frame buffer.

DPYTAP is typically used to alter (set to a value other than all 0s) only
those column address bits of the SRFADR field of DPYADR that are never
incremented. For instance, given a VRAM that requires an 8-bit column
address, assume that SRFADR alternately sets the two MSBs of the column
address to 009, 019, 102, and 112. In this case, DPYTAP should contain
1s only in the bit positions corresponding to the six LSBs of the column
address.

6-25

HCOUNT

Horizontal Count Register

Address

Description

6-26

C00001COh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| HCOUNT |

The HCOUNT register is a 16-bit counter used in the generation of the
horizontal sync and blanking signals. HCOUNT is incremented on the fall-
ing edge of the video input clock, and is used to count the number of video
clock periods per horizontal scan line. To generate horizontal sync and
blanking signals, the value of HCOUNT is compared to the value of the four
horizontal timing registers: HESYNC, HEBLNK, HSBLNK, and HTOTAL.
When external sync mode is disabled and the value in HCOUNT = HTO-
TAL, HCOUNT is reset to O on the next VCLK falling edge and the HSYNC
output is driven active low. HCOUNT is also reset to O if the external sync
mode is enabled and the input signal HSYNC is driven low.

Two separate, asynchronous elements of the TMS34010 logic can access
the HCOUNT register:

® The internal processor, which runs synchronously to local clocks
LCLK1 and LCLK2, can access HCOUNT as an |/0 register.

® The video timing control logic, which runs synchronously to the video
clock VCLK, increments and clears HCOUNT in generating the sync
and blanking signals.

No synchronization between these two subsystems is provided, and
HCOUNT can only be reliably read or written to while VCLK is held at the
logic-high level. HCOUNT is typically not read or written to except during
chip test.

Horizontal End Blank Register HEBLNK

Address

Description

C0000010h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
| HEBLNK |

The HEBLNK register is used during the generation of the blanking signal
output to the video monitor. The 16-bit value loaded into HEBLNK is
compared to HCOUNT, and designates the point at which the horizontal
blanking interval ends. The blanking signal output at the BLANK pin is a
composite of the internal horizontal and vertical blanking signals. When the
value in HCOUNT = HEBLNK, the BLANK output is driven inactive high
unless vertical blanking is currently active. Most video monitors require
HEBLNK to be set to a value that is less than the value in HSBLNK, but
greater than the value in HESYNC.

HESYNC

Horizontal End Sync Register

Address

Description

6-28

C0000000h

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
{ HESYNC |

The HESYNC register is used during generation of the horizontal sync sig-
nal output to the video monitor. The 16-bit value loaded into HESYNC
determines the point at which the horizontal sync puise ends. When the
value in HCOUNT = HESYNC, the signal output from the HSYNC pin is
driven inactive high to signal the end of the horizontal sync interval. Typical
monitors require that HESYNC be set to a value less than the value con-
tained in the HEBLNK register. (However, the HESYNC value is not re-
quired to be less than the HEBLNK value.) The minimum value of HESYNC
is 0.

When external video is enabled and the HSYNC pin is configured as an in-
put, HESYNC should be loaded with a value that ensures that the condition
HCOUNT = HESYNC occurs after the external HSYNC signal has gone in-
active-high, but before HSYNC goes active low again. For example, a good
HESYNC value might be the average of the values in HEBLNK and
HSBLNK.

Horizontal Start Blank Register HSBLNK

Address

Description

C0000020h
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

[HSBLNK]

The HSBLNK register is used during generation of the blanking signal out-
put to the video monitor. The 16-bit value in HSBLNK is compared to
HCOUNT, and designates the point at which the horizontal blanking inter-
val begins. The blanking signal output at the BLANK pin is a composite of
the internal horizontal and vertical blanking signals. When the condition
HCOUNT = HSBLNK occurs, the BLANK output is driven from its inac-
tive-high level to its active-low level (unless it is already low due to vertical
blanking being active).

Several internal events coincide with the start of horizontal blanking. First,
when a screen-refresh cycle is programmed to occur during a particular
horizontal scan line, a request for the cycle is sent to the memory controlier
at the beginning of the horizontal blanking interval that occurs at the end
of the line. Second, if a display interrupt request is programmed to occur
during a particular horizontal scan line, the request is generated at the start
of horizontal blanking. Typical monitors require that HSBLNK be set to a
value that is less than the value in HTOTAL, but greater than the value in
HEBLNK.

6-29

HSTADRH

Host Interface Address Register, High Word

Address

Description

6-30

COO000EOh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[HSTADRH |

The HSTADRH register contains the 16 MSBs of a 32-bit pointer address;
the 16 LSBs are contained in HSTADRL. The contents of HSTADRL and
HSTADRH are concatenated to form a single 32-bit address during an in-
direct access by a host processor. The pointer address can be accessed by
both the host processor and the TMS34010. The host accesses the pointer
address through two 16-bit host interface registers that are mapped into the
host’'s memory or |/O address space.

The four LSBs of the 32-bit pointer address are forced to O to point to an
even word boundary in memory. |f the address pointer is incremented past
the largest word address in memory, it will wrap around to the lowest ad-
dress (ail Os).

When you use the HSTADRH and HSTADRL registers to read data indi-
rectly from the host, be sure that you access them in the correct order. If
LBL=0, HSTADRH should be written fast. If LBL=1, HSTADRL should
be written last.

Note:

When the TMS34010's on-chip processor writes to HSTADRH or
HSTADRL, the referenced data is not automatically read into
HSTDATA. For more information about the host interface, refer to
Section 10.

Host Interface Address Register, Low Word HSTADRL

Address

Description

C00000DO0N

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[HSTADRL |

The HSTADRL register contains the 16 LSBs of a 32-bit pointer address;
the 16 MSBs are contained in HSTADRH. The contents of HSTADRL and
HSTADRH are concatenated to form a single 32-bit address during an in-
direct access by a host processor. The pointer address can be accessed by
both the host processor and the TMS34010. The host accesses the pointer
address through two 16-bit host interface registers that are mapped into the
host's memory or |/0O address space.

The four LSBs of the 32-bit pointer address are forced to O to point to an
even word boundary in memory. If the address pointer is incremented past
the largest word address in memory, it will wrap around to the iowest ad-
dress (all 0s).

When you use the HSTADRH and HSTADRL registers to read data indi-
rectly from the host, be sure that you access them in the correct order. If
LBL=0, HSTADRH should be written last. If LBL=1, HSTADRL should
be written last.

Note:

When the TMS34010’s on-chip processor writes to HSTADRH or
HSTADRL, the referenced data is not automatically read into
HSTDATA. For more information about the host interface, refer to
Section 10.

6-31

HSTCTLH Host Interface Control Register, High Byte

Address C0000100h
Bit
Assignments 15 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 0
[HLT | CF] LBL [INCREINCW] Res [NMiM| Nmi | Reserved |
Fields Bits Name Function
0-7 | Reserved Not used
8 | NMI Nonmaskable interrupt
9 | NMIM Mode bit for NMi
10 | Reserved Not used
11 | INCW Increment pointer address on write
12 | INCR Increment pointer address on read
13 | LBL Lower byte last
14 | CF Cache flush
15 | HLT Halt TMS34010 processing

Description The HSTCTLH register contains seven programmable bits used to control
host interface communications. A host processor can access the control
bits in the HSTCTLL and HSTCTLH registers as a single host interface re-
gister, HSTCTL. The bits of the host interface’s HSTCTL register are
mapped into two separate |I/0 register locations in the TMS34010’s mem-
ory map, HSTCTLL and HSTCTLH, to allow the TMS34010 to alter the bits
in one location without affecting the bits in the other.

The HSTCTLH bits can be both written to and read by both the host pro-
cessor and the TMS34010. Unpredictable results occur if the TMS34010
and host simultaneously write different values to the HSTCTLH bits. Typi-
cally only the host alters the bits in HSTCTLH.

[) NM1 (Nonmaskable interrupt, host to TMS34010, bit 8)

The nonmaskable interrupt allows the host processor to redirect the exe-
cution flow of TMS34010 processing to an NMI routine, regardless of the
current state of the interrupt mask flags. The host writes a 1 to the NMI bit
to send a nonmaskable interrupt request to the TMS34010. The interrupt
request cannot be disabled, and will always be executed (unless the
TMS34010 is reset before it can complete interrupt execution). The inter-
rupt is initiated immediately upon NMI becoming set (at the time the current
instruction completes execution, or in the case of a pixel array instruction,
at the next interruptible point in the instruction). Once the interrupt is taken,
internal logic automatically clears the NMI bit to 0.

One use of the NMI is to generate a soft reset after the host downloads new
program code into TMS34010 memory. Following execution of a non-
maskable interrupt, screen-refresh and DRAM-refresh functions continue
unaffected. The contents of internal registers other than the HSTCTL reg-
ister are not altered by the interrupt, although they can be modified by the
NMLI service routine.

6-32

Host Interface Control Register, High Byte HSTCTLH

® NMIM (Nonmaskable interrupt mode, bit 9)

The NMI mode bit determines whether or not the context of the interrupted
program is saved when a nonmaskable interrupt occurs. When NMIM=0,
the context is saved on the system stack before the NMI service routine is
executed. When NMIM=1, the context is discarded when the NMI service
routine is executed.

The NMIM=0 mode supports applications such as single stepping of in-
structions where the status and PC must be preserved between consecutive
nonmaskable interrupts. When NMIM=1, a nonmaskable interrupt can be
used to simulate a hardware reset in software (using the NMI vector).
Saving the context may be of no benefit if either:

- Control is never to be returned to the interrupt program or
- The integrity of the stack pointer is suspect.

The nonmaskable interrupt does not cause the I/O registers to be reset.
Consequently, if an NMI is used to simulate a hardware reset, the 1/0 reg-
isters should be reset by software within the NMI service routine.

NMI [NMIM Effect
0 0 No effect
0 1 Undefined
1 0 NMI (save context on stack)
1 1 NMI (discard previous context)

] CF (Cache flush, bit 14)

While CF is set to 1, the contents of the instruction cache are flushed. All
four P (present) flags in the cache control logic remain forced to O as long
as CF remains 1. When CF=1, the cache is disabled; instruction words are
fetched from local memory one at a time as they are needed for execution
by the TMS34010. Normal cache operation resumes when CF is set to O,
assuming the CD bit in the CONTROL register is also 0. When the value of
CF is changed from 1 to 0, the cache begins operation in the same initial
state as that which immediately follows reset.

One use of the CF bit is during downloads of new software from the host
processor to TMS34010 local memory. By setting CF to 1 and then to O
again, the host processor forces the TMS34010 to begin to load new in-
structions into the cache from memory rather than continue execution of
stale instructions already contained in the cache. A O must be loaded into
CF for normal cache operation to resume.

CF Effect
0 No effect
1 Flush and disable cache

6-33

HSTCTLH Host Interface Control Register, High Byte

® LBL (Lower byte /ast, bit 13)

The LBL bit specifies whether an indirect access of TMS34010 memory,
initiated by a host register access, begins when the upper or lower byte of
the register is accessed by the host processor.

LBL is provided to accommodate host processors with 8-bit data paths.
An 8-bit processor must access a 16-bit TMS34010 host interface register
as a series of two 8-bit bytes. Processors which access the lower byte (bits
0-7) first and the upper byte (bits 8-15) second should typically set LBL to
0, and those that access bytes in the opposite sequence should set LBL to
1.

When LBL is 0, a loca! bus cycle is initiated if:

— The host writes to the upper byte of HSTADRH, or
— The host reads from or writes to the upper byte of HSTDATA.

If LBL is 1, a local bus cycle is initiated if

- The host accesses the lower byte of HSTDATA, or
- The host writes to the lower byte of HSTADRL

With this capability, the TMS34010 is capable of automatically resolving so
called “Little-Endian/Big-Endian” byte addressing incompatibilities be-
tween various processors, and promotes software transparency between 8-
and 16-bit versions of the same processor architecture (such as the 8088
and 8086).

LBL Effect

0 Initiate 16-bit local bus cycle on host access of upper byte of HSTDATA,
or on load of upper byte of HSTADRH

1 Initiate 16-bit local bus cycle on host access of lower byte of HSTDATA,
or on load of lower byte of HSTADRL

[INCR (/ncrement address before local read, bit 12)

The INCR bit controls whether or not the 32-bit address pointer contained
in the HSTADRL and HSTADRH registers is incremented before each read.

INCR Effect
0 Do not increment address pointer before read cycle on local memory bus
1 Increment address pointer before read cycle on local memory bus

When INCR=1, the 32-bit address contained in registers HSTADRL and
HSTADRH is incremented by 16 before being used for the next read of the
TMS34010 memory. This means that HSTDATA is updated to the contents
of the next sequential word in the local memory in preparation for the next
anticipated read of HSTDATA by the host processor. A local read cycle also
occurs when the host loads a new address into the HSTADRL and
HSTADRH registers, but the address is not incremented in this case. When
incrementing is enabled, repeated reads of the HSTDATA register by the

6-34

Host Interface Control Register, High Byte HSTCTLH

host result in a series of adjacent words in TMS34010 memory being read;
otherwise, the same memory word is read each time. Regardless of the va-
lue of the INCR bit, each time HSTDATA is read by the host, a new word
is automatically read into HSTDATA from the TMS34010’s memory.

] INCW (/ncrement address after local write, bit 11)

The INCW bit controls whether or not the 32-bit address pointer contained
in the HSTADRL and HSTADRH registers is incremented after each write.

INCW Effect
0 Do not increment address pointer after write cycle on local memory bus
1 Increment address pointer after write cycle on local memory bus

When INCW=1, the 32-bit address contained in registers HSTADRL and
HSTADRH is incremented by 16 after being used as the memory write ad-
dress. When incrementing is enabled, repeated writes to the HSTDATA re-
gister by the host cause a series of adjacent words in TMS34010 memory
to be modified; otherwise, the same memory word is modified repeatedly.
Regardless of the value of the INCW bit, each time HSTDATA is written to
by the host, a new cycle is initiated to write the contents of HSTDATA to
the TMS34010’s memory.

® HLT (Halt TMS34010 program execution, bit 17)

When the HLT bit is set to 1, the TMS34010 suspends instruction process-
ing at the next instruction boundary. Once halted, the TMS34010 does not
respond to interrupt requests (including NM!). Local memory refresh and
video timing functions continue unaffected while the TMS34010 is halted.
When HLT is again set to 0, the TMS34010 continues execution.

While the TMS34010 is halted, external bus-master devices can arbitrate for,
obtain, and release control of the local bus via the TMS34010 hold inter-
face. While the TMS34010 is in the hold state, it cannot perform DRAM-
refresh or screen-refresh cycles.

The state of the HLT bit immediately following reset is determined by the
state of the HCS pin at the time of the low-to-high transition of RESET:

- If HCS is low, HLT is set to 0, and the TMS34010 is enabled to begin
executing its reset routine.

-~ If HCS is high, HLT is set to 1, and the TMS34010 is halted.

Both the host processor and TMS34010 can write to the HLT bit; this means
the TMS34010 can halt itself by loading a 1 into HLT.

HLT Effect
0 Allow TMS34010 to run
1 Halt TMS34010 instruction execution

6-35

HSTCTLL Host Interface Control Register, Low Byte
Address COO0000FCh
Bit
Assignments 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
Reserved (I)t;l}_} MSGOUT lmT MSGIN
Fields Bits Name Function
0-2] MSGIN Input message buffer
3| INTIN Input interrupt bit
4-6| MSGOUT Qutput message buffer
71 INTOUT Output interrupt bit
8-15| Reserved Not used
Description The HSTCTLL register contains eight programmable bits used to control
host interface communications. A host processor can access the control
bits in the HSTCTLL and HSTCTLH registers as a single host interface re-
gister, HSTCTL. The bits of the host interface’s HSTCTL register are
mapped into two separate 1/0 register locations in the TMS34010’s mem-
ory map, HSTCTLL and HSTCTLH, to allow the TMS34010 to alter the bits
in one location without affecting the bits in the other.
The HSTCTLH bits can be read by both the host processor and the
TMS34010. The following restrictions apply to writes:
® The MSGOUT field can be modified only by the TMS34010.
® The MSGIN field can be modified only by the host.
® The host can write a 1 to the INTIN bit, but writing a 0 has no effect.
{] The TMS34010 can write a O to the INTIN bit, but writing a 1 has no
effect.
® The TMS34010 can write a 1 to the INTOUT bit, but writing a O has
no effect.
® The host can write a 0 to the INTOUT bit, but writing a 1 has no ef-
fect.
Internal arbitration logic permits the TMS34010 and host processor to ac-
cess HSTCTLL at the same time without hazard. Synchronization of asyn-
chronous signals at the host interface pins is performed internally.
() MSGIN (Message in, host to TMS34010, bits 0-2)

6-36

The MSGIN field buffers a 3-bit interrupt message to the TMS34010 from
the host. The MSGIN field can be both written to and read by the host, but
only read by the TMS34010. The MSGIN field typically contains a com-
mand or status code from the host, which is read by the TMS34010 in re-
sponse to a host-generated interrupt (INTIN=1). The meaning of this code
is defined in the software of the host and TMS34010.

Host Interface Control Register, Low Byte HSTCTLL

® INTIN (/nterrupt in, host to TMS340170, bit 3)

The INTIN bit controls the interrupt request to the TMS34010 from the host.
To generate an interrupt request, the host processor loads a 1 to INTIN. The
TMS34010 deactivates the request by loading a 0 to INTIN. An attempt by
the host to load a O to INTIN has no effect. Similarly, an attempt by the
TMS34010 to load a 1 to INTIN has no effect. A read-only copy of the
INTIN bit is available as the HIP bit in the INTPEND register. The HIP bit
faithfully represents the state of the INTIN bit at all times.

INTIN Effect
0 No interrupt request to TMS34010
1 Send interrupt request to TMS34010

® MSGOUT (Message out. TMS34010 to host, bits 4-6)

The MSGOUT field buffers a 3-bit interrupt message to the host from the
TMS34010. The MSGOUT field can be both written to and read by the
TMS34010, but only read by the host. The MSGOUT field permits an in-
terrupt request generated by means of the INTOUT bit to be qualified by an
additional command or status code, the meaning of which is defined in the
software of the host and TMS34010.

° INTOUT (/nterrupt out, TMS34010 to host, bit 7)

The INTOUT bit controls the interrupt request to the host processor from the
TMS34010. An interrupt request is transmitted to the host by means of an
active-low level on the HINT pin. When INTOUT is 1, HINT is driven active
low; when INTOUT is O, HINT is driven inactive high. The TMS34010 acti-
vates the interrupt request by loading a 1 to INTOUT, and the host deacti-
vates the interrupt request by loading a 0 to INTOUT. An attempt by the
TMS34010 to load a 0 to INTOUT has no effect. Similarly, an attempt by
the host to load a 1 to INTOUT has no effect.

INTOUT Effect
0 No interrupt request to host
1 Send interrupt request to host

6-37

HSTDATA

Host Interface Data Register

Address

Description

6-38

C00000COh

1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[HSTDATA |

The HSTDATA register buffers data transferred through the host interface
between TMS34010 local memory and a host processor. HSTDATA can
be accessed by the TMS34010 at address COO000COh. It is one of the four
16-bit registers that can be accessed by the host register through the
TMS34010 host interface. HSTDATA is typically accessed by the host
rather than the TMS34010. Using the HSTDATA register, the host can ei-
ther read the TMS34010's memory or write to it. The host initiates the in-
direct access through the host interface using the 32-bit pointer address in
the HSTADRL and HSTADRH registers. During each indirect access, a
16-bit word is transferred between the HSTDATA register and TMS34010
memory. The host processor can access the contents of the HSTDATA re-
gister in one 16-bit data transfer or two 8-bit transfers. When the
TMS34010's on-chip processor reads from or writes to HSTDATA, no au-
tomatic read or write cycle takes place between HSTDATA and the memory
word pointed to by HSTADRL and HSTADRH.

Horizontal Total Register HTOTAL

Address

Description

C0000030h
5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| HTOTAL |

The HTOTAL register is used during generation of the horizontal sync signal
output to the video monitor from the TMS34010. It determines the dura-
tion of each horizontal scan line on the screen in terms of the number of
VCLK (video clock) periods. The contents of HTOTAL are compared with
the horizontal count in HCOUNT to determine the point at which the hori-
zontal sync pulse begins, which also represents the beginning of a new
scan line. HCOUNT counts from O to the value contained in HTOTAL.
When HCOUNT = HTOTAL, the HSYNC output is driven active low on the
next falling edge of the VCLK signal, and HCOUNT is reset to O on the same
clock edge.

HTOTAL is loaded with a 16-bit value greater than that contained in
HSBLNK, but less than or equal to 65535. In interlaced scan mode, the
value in HTOTAL should be an odd number (LSB=1) to achieve equal
spacing between adjacent scan lines. The total number of VCLK video
clocks in each horizontal scan line is calculated as HTOTAL + 1. When
external sync mode is enabled (DXV=0) and HSYNC is configured as an
input (HSD=0), HTOTAL should be loaded with a value greater than the
value of HCOUNT at the point at which the external sync pulse is expected.
If the external sync pulse does not occur, HCOUNT will be reset when
HCOUNT = HTOTAL.

6-39

INTENB

Interrupt Enable Register

Address
Bit

Assignments

Fields

Description

6-40

C0000110h
% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[Reserved [WVEI DIEI HIEI Reserved IX2E I X1 E| Resl
Bits Name Function
0| Reserved Not used
1] X1E External interrupt 1 enable
2| X2E External interrupt 2 enable
3-8| Reserved Not used
9| HIE Host interrupt enable
10| DIE Display interrupt enable
111 WVE Window-violation interrupt enable
12-15{ Reserved Not used

The INTENB register contains the interrupt mask used to selectively enable
the three internally and two externally generated interrupt requests. The
following interrupts are enabled by the INTENB register:

® External interrupts 1 and 2 are generated by active-low signals on the
input pins LINT1 and LINT2, respectively.

° The host interrupt is generated when the host processor sets the IN-
TIN bit in the HSTCTL register to 1.

L J The display interrupt is generated when the vertical count in the
VCOUNT register reaches the value contained in the DPYINT register.

® The window-violation interrupt is caused by an attempt to write a
pixel to a region of the bit map lying outside the limits of the cur-
rently-defined window.

The status register contains a global interrupt enable bit, IE. The INTENB
register contains individual interrupt enable bits associated with each of the
interrupts (X1E, X2E, HIE, DIE, and WVE). Interrupts are enabled through
a combination of setting the |IE bit and the appropriate bit in the INTENB
register. When {E=0, all interrupts are disabled regardless of the values of
the bits in the INTENB register. When |E=1, each interrupt is enabled or
disabled according to the corresponding enable bit in the INTENB register
(1 enables the interrupt, O disables it).

Interrupt Pending Register INTPEND

Address
Bit

Assignments

Fields

Description

C0000120h

5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[Reserved IWVPl DF[HIPI Reserved |X2P] X1 PI Res
Bits Name Function
0| Reserved Not used
11 X1P External interrupt 1 pending
2| X2P External interrupt 2 pending
3-8} Reserved Not used
9] HIP Host interrupt pending
10] DIP Display interrupt pending
11| WVP Window-violation interrupt pending
15-12| Reserved Not used)

The INTPEND register indicates which interrupt requests are currently
pending. INTPEND’s six active bits indicate the status of the following in-
terrupts:

(] External interrupts 1 and 2 are generated by active-low signals on the
input pins LINT1 and LINTZ2, respectively.

[] The host interrupt request is generated when the host processor sets
the INTIN bit in the HSTCTL register to 1.

{ The display interrupt request is generated when the vertical count in
the VCOUNT register reaches the value contained in the DPYINT re-
gister.

[J The window-violation interrupt request is caused by an attempt to
write a pixel to a region of the bit map lying inside or outside the limits
of the currently-defined window, depending on the selected win-
dowing mode.

The individual pending bits in the INTPEND register reflect the status of
interrupt requests. The interrupt is requested if the corresponding pending
bit is 1. There is no request if the pending bit is 0. The status of each in-
terrupt request is reflected in the INTPEND register regardless of whether
the interrupt is enabled or not; this allows the TMS34010 to poll interrupts.

The X1P and X2P bits of INTPEND are read only. They reflect the input
levels on the TINT1 and TINT2 pins, and are not affected when the INTPEND
register is written to. The LINT1 and LINT2 pins are asynchronous inputs,
but the signals to these pins are synchronized internally so that the X1P and
X2P bits in the INTPEND register may be reliably read at any time. If an
external interrupt is disabled, the interrupt request is ignored, even though
the corresponding pending flag in INTPEND is set. The interrupt will be
taken by the TMS34010 only if the external request is maintained at the
corresponding interrupt request pin until the interrupt is again enabled.

INTPEND

Interrupt Pending Register

6-42

The DIP and WVP bits in the INTPEND register reflect the status of interrupt
requests generated by conditions internal to the TMS34010. These two bits
are implemented as latches. Once set, DIP or WVP will remain set until a
0 is written to it (or the TMS34010 is reset). Writing a 1 to either of these
bits has no effect at any time. While an internal interrupt is disabled, the
interrupt request is ignored, even though the corresponding pending flag
in INTPEND is set. |f the interrupt is subsequently enabled while the in-
terrupt pending flag remains set (because of a prior interrupt request) then
the interrupt will be taken by the TMS34010.

The HIP bit in the INTPEND register is a read-only bit that always displays
the current contents of the INTIN bit in the HSTCTL register. Writing to the
INTPEND register has no effect on the HIP bit. A host interrupt request is
generated when the host processor writes a 1 to the INTIN bit of the
HSTCTL register. The TMS34010 clears the interrupt request by writing a
0 to the INTIN bit.

Plane Mask Register PMASK

Address

Description

C0000160h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
[PMASK |

The PMASK register selectively enables or disables various planes in the
bit map of a display system in which each pixel is represented by multiple
bits. PMASK contains a 16-bit value that determines which bits of each
pixel can be modified during execution of a DRAV, PIXT, FiLL, LINE, or
PIXBLT instruction. Via the PMASK register, the programmer specifies
which bits within each pixel are protected (mask bit=1) and not protected
(mask bit=0) from modification. During a pixel write operation, the Os in
the plane mask represent bit positions within the destination pixel that are
to be modified by the pixel operation. The 1s in the plane mask represent
bit positions in the destination pixel that are protected from modification.
During a pixel read operation, the Os in the mask indicate which bits within
a pixel may be read; bits corresponding to 1s in the mask are always read
as Os.

The organization of a display memory is sometimes described in terms of
bit planes. If the pixel size is four bits, for example, and the bits in each
pixel are numbered from O to 3, the display memory is said to be composed
of four bit planes, numbered from 0 to 3. Plane 0 contains all the bits
numbered 0 from all the pixels, plane 1 contains all the bits numbered 1
from all the pixels, and so on. A 4-bit mask is constructed such that bit O
of the mask enables (if 0) or disables (if 1) writes to the bits in plane O,
mask bit 1 enables or disables writes to plane 1, and so on.

The plane mask for a 4-bit pixel is four bits; the plane mask for an 8-bit pixel
is eight bits; and so on. The plane mask must be replicated throughout the
16 bits of the PMASK register. For example, with four bits per pixel, the
PMASK register is loaded with four identical copies of the corresponding
4-bit plane mask, as indicated below.

15 12 11 8 7 43 0
PMASK | MAsk | mask [wmask | wmaAsk |

With a pixel size of eight bits, the corresponding 8-bit plane mask is repli-
cated twice — once in bits 0-7 of PMASK, and again in bits 8-15. In gen-
eral, all 16 bits of the register are used, and a mask for a pixel size of less
than 16 bits must be duplicated n times, where n is 16 divided by the pixel
size.

The individual bits of the PMASK register are associated with the corre-
sponding bits of the 16-bit local data bus (data are in fact multiplexed over
the same LADO-LAD15 pins as addresses). PMASK register bit 0 is asso-
ciated with bit O of the data bus (the bit transferred on LADQ), PMASK bit
1 is associated with bit 1 of the data bus, and so on. In general, if PMASK
bit n is a 0, then bit n of the data bus is enabled by the mask; if PMASK
bit n is a 1, bit n is disabled by the mask.

Plane masking is effectively disabled (allowing all bits of each pixel to be
modified) by loading all Os into the PMASK register. This is the default
state of PMASK following reset.

6-43

PMASK

Plane Mask Register

6-44

To maintain upward compatibility with future versions of the GSP, software
drivers should treat the PMASK register as a 32-bit register beginning at
address C0000160h. In other words, software should write the plane mask
value not only to the 16-bit word at address CO000160h, but also to the
word at C0000170h. Writing the second word will have no effect on the
TMS34010, but will ensure software compatibility with future graphics

processors which may extend the PMASK register from 16 to 32 bits.

Pixel Size Register PSIZE

Address C0000150h

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[PSIZE |

Description The PSIZE register is used to specify the pixel size in bits. If the pixel size
is four, for example, PSIZE is loaded with the value four. If the pixel size
is eight, PSIZE is loaded with the value eight, and so on. All 16 bits of the
PSIZE register can be written to or read. Legal pixel sizes are 1, 2, 4, 8, and
16 bits; any other value of PSIZE is undefined.

PSIZE Pixel Size
0001h 1 bit/pixel
0002h 2 bits/pixel
0004h 4 bits/pixel
0008h 8 bits/pixel
0010h 16 bits/pixel

6-45

REFCNT Refresh Count Register

Address C00001FOh
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| ROWADR | RINTVL | Reserved|
Fields Bits | Name Function

01 Reserved Not used
2-7 | RINTVL Refresh interval
8-15 | ROWADR Row address

Description The REFCNT register generates the addresses output during DRAM refresh
cycles and counts the intervals between successive DRAM refresh cycles.

DRAMs require periodic refreshing to retain their data. The TMS34010
automatically generates DRAM refresh cycles at regular intervals. The in-
terval between refresh cycles is programmable. The DRAM refresh mode
is selected by loading the appropriate value to the two-bit RR (refresh rate)
field in the CONTROL register. DRAM refreshing can be disabled in sys-
tems that do not require it. The modes are defined as follows.

RR Description

00 Refresh every 32
local clock periods

01 Refresh every 64
local clock periods

10 Reserved for future
expansion

11 No DRAM refreshing

At reset, the RR field is set to the initial value 00,. During the time that the
reset signal to the TMS34010 is active, no DRAM-refresh cycles are per-
formed.

Bits 2-15 of REFCNT form a continuous binary counter. Bits 2-7 form the
RINTVL field, which counts the intervals between successive requests for
DRAM-refresh cycles. When RR=015, the RINTVL field is decremented
by 1 every local clock cycle; that is, the register is decremented at bit 2. This
means that RINTVL underflows into ROWADR (a borrow ripples from bit
7 to bit 8 of REFCNT) every 64 local clock cycles. The underflow has two
effects:

(] ROWADR is decremented by 1 and

® A request for a DRAM-refresh cycle is sent to the memory control
logic.

When RR=009, the RINTVL field is decremented by 2 every local clock
period. This means that a DRAM-refresh cycle is generated every 32 local
clock periods, twice the rate that results when RR=012. When RR=119,
DRAM refreshing is disabled and no DRAM-refresh cycles occur.

6-46

Refresh Count Register REFCNT

During a DRAM-refresh cycle, the row address output to memory is taken
from the 8-bit ROWADR field of REFCNT. Specifically, bits 8-15 of
REFCNT are output on LADO-LAD7. REFCNT bits 8-14 are simultaneously
output on LAD8-LAD14. (The RF bus status signal is output as a low level
on LAD15.) This means that the 8-bit row address needed to refresh a
DRAM can be taken from any eight adjacent LAD pins in the range
LADO-LAD14. Note that as ROWADR counts from 255 to 0, the refresh
addresses output at the selected eight LAD pins will sequence through all
256 values in the range 255 to 0, though not necessarily in the same order
as ROWADR.

REFCNT is set to O at reset; after that, refresh address generation is auto-
matic. Typically there is no reason to read this register or write to it, al-
though it can be accessed similarly to the way other 1/O registers are
accessed. In order to reliably write a value to REFCNT, DRAM refresh
should be disabled (by setting RR to 112) before writing to REFCNT.

6-47

VCOUNT

Vertical Count Register

Address

Description

6-48

C00001DO0Nh

1% 14 13 12 11 10 9 8 7 6 65 4 3 2 1 O
{ VCOUNT |

The VCOUNT register is a 16-bit counter used during generation of the
vertical sync and blanking signals. VCOUNT counts the horizontal lines in
the video display, incrementing at the same clock edge at which HCOUNT
is internally reset to 0. This causes the falling edges of HSYNC and VSYNC
to coincide.

In order to generate vertical sync and blanking signals, the value of
VCOUNT is compared to the value of the four vertical timing registers,
VESYNC, VEBLNK, VSBLNK, and VTOTAL. When HCOUNT = HTOTAL
and VCOUNT = VTOTAL at the same time, VCOUNT is reset to O on the
next VCLK falling edge and the VSYNC output is driven active low.

If interlaced scan mode is enabied and the current field is even, and if
VCOUNT = VTOTAL and HCOUNT = HTOTAL/2, then VCOUNT is reset
to 0 and VSYNC goes low (HCOUNT is not reset until it reaches the value
HCOUNT = HTOTAL). When external sync mode is enabled, VCOUNT is
reset to O when the VSYNC input signal goes active low.

A display interrupt request is generated when VCOUNT = DPYINT. This
can be used to coordinate software activity with the refreshing of selected
lines on the screen.

Two separate, asynchronous elements of the TMS34010 internal logic can
access VCOUNT:

° The internal processor, which runs synchronously to local clocks
LCLK1 and LCLK2, can access VCOUNT as an |/0 register.

° The video timing control logic, which runs synchronously to the video
clock VCLK, increments and clears VCOUNT in the course of gener-
ating the sync and blanking signals.

No synchronization between these two subsystems is provided, and
VCOUNT can only be reliably read or written while VCLK is held at the
logic-high level. VCOUNT is typically not read or written to except during
chip test.

Vertical End Blank Register VEBLNK

Address

Description

C0000050h

15 14 13 12 11 10 9 8 7 6 656 4 3 2 1 0
| VEBLNK |

VEBLNK is a video timing register that designates the time at which the
vertical blanking interval ends. The 16-bit value contained in VEBLNK is
compared to VCOUNT to determine when to end the vertical blanking in-
terval. The vertical blanking interval ends when the following conditions
are satisfied:

® VCOUNT = VEBLNK
[HCOUNT = HTOTAL

The end of the vertical blanking interval coincides with the start of the
horizontal sync, occurring at a time when the internal horizontal blanking
signal is active. The blanking signal output from the BLANK pin is a com-
posite of the horizontal and vertical blanking signals generated internally,
and will not reach its inactive-high level until both internal blanking signals
have become inactive.

When external video is enabled (DXV=0) and the HSYNC pin is configured
as an input (HSD=0), the vertical blanking interval ends when the follow-
ing conditions are satisfied:

® VCOUNT = VEBLNK and
® The leading edge of the external horizontal sync pulse is detected

The beginning of the sync pulse is seen as a high-to-low transition at the
HSYNC pin.

Typical video monitors require VEBLNK to be set to a value less than the
value in VSBLNK, and greater than the value in VESYNC.

6-49

VESYNC

Vertical End Sync Register

Address

Description

6-50

C0000040h

15 14 13 12 11 10 9 8 7 6 65 4 3 2 1 0
| VESYNC |

VESYNC is a video timing register that designates the time at which the
vertical sync pulse ends. The 16-bit value contained in VESYNC is com-
pared to VCOUNT to determine when to end the vertical sync pulse. The
sync pulse ends when the following conditions are satisfied:

® VCOUNT = VESYNC
[HCOUNT = HTOTAL

The VSYNC output is driven inactive high to signal the end of the vertical
sync interval.

When interlaced mode is enabled and the next vertical field is odd, VSYNC
is driven high when VCOUNT = VESYNC and HCOUNT = HTOTAL/2.

Typical video monitors require VESYNC to be set to a value less than the
value contained in the VEBLNK register; the minimum value of VESYNC is
0.

When external sync mode is enabled (DXV=0), the end of the external
vertical sync pulse is detected as a low-to-high transition at the VSYNC pin,
which is configured as an input. VESYNC should be loaded with a value
greater than the value in VCOUNT at the point at which the external VSYNC
input signal should go inactive high, but lower than the value in VCOUNT
when the external VSYNC should again become active low. For example,
VESYNC could be loaded with the sum of the values in VEBLNK and
VSBLNK divided by two.

Vertical Start Blank Register VSBLNK

Address

Description

C0000060h

%5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
[VSBLNK |

VSBLNK is a video timing register that designates the time at which the
vertical blanking interval starts. The 16-bit value contained in VSBLNK is
compared to VCOUNT to determine when to start the vertical blanking in-
terval. The vertical blanking interval starts when the following conditions
are satisfied:

® VCOUNT = VSBLNK
® HCOUNT = HTOTAL

The start of the vertical blanking interval coincides with the start of the
horizontal sync, occurring at a time when the internal horizontal blanking
signal is active. The blanking signal output from the BLANK pin is a com-
posite of the horizontal and vertical blanking signals generated internally,
and reaches its active-low level when either or both internal blanking sig-
nals are active.

When external video is enabled (DXV=0) and the HSYNC pin is configured
as an input (HSD=0), the vertical blanking interval starts when the follow-
ing conditions are satisfied:

® VCOUNT = VSBLNK
e The leading edge of the external horizontal sync pulse is detected

The beginning of the horizontal sync pulse is seen as a high-to-low transi-
tion at the HSYNC pin.

VSBLNK should be set to a value less than the value in VTOTAL, and
greater than the value in VEBLNK.

6-51

VTOTAL Vertical Total Register
Address C0000070h
1% 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O
| VTOTAL [
Description VTOTAL contains a 16-bit value that designates the value of VCOUNT at

6-52

which the vertical sync pulse begins. The contents of VTOTAL are com-
pared to VCOUNT to determine when to start the vertical sync pulse. Ver-
tical sync begins when the following two conditions are satisfied:

® VCOUNT = VTOTAL
° HCOUNT = HTOTAL

These conditions cause HCOUNT to begin counting from O again.

The VSYNC output is driven active low to signal the start of the vertical sync
interval. The high-to-low transitions of VSYNC and HSYNC occur at the
same clock edge.

When interlaced mode is enabled and the next vertical field is odd, VSYNC
is driven low when VCOUNT = VESYNC and HCOUNT = HTOTAL/2. The
total number of horizontal lines in each vertical field is calculated as VTO-
TAL + 1. In interlaced mode the total number of horizontal lines in both
fields of the vertical frame is calculated as 2x VTOTAL-1.

When externai video is enabled (DXV=0), the VSYNC pin is configured as
an input rather than an output. The high-to-low transition of VSYNC is re-
cognized as the beginning of the vertical sync pulse, unless the condition
VCOUNT = VTOTAL and the start of horizontal sync are detected first.
VTOTAL should be loaded with a value at least as large as the value of
VCOUNT at which the external sync pulse shouid begin. Should the ex-
ternal sync pulse not occur, VCOUNT will be reset one VCLK period after
the conditions VCOUNT = VTOTAL and HCOUNT = HTOTAL occur.

VTOTAL should be set to a value greater than the value in VSBLNK. The
maximum value that can be loaded into VTOTAL is 65535.

Section 7

Graphics Operations

This section provides an overview of the graphics drawing capabilities of the
TMS34010. Topics in this section include:

Section
7.1 Graphics Operations OVEIVIEWcccocevmrierimnieniniesseceeeeseseeseerenenns
7.2 Pixel Block Transferscuocoriiiininnenenie et
7.3 Pixel Transfers ...t
7.4 Incremental Algorithm SUPPOrt ...t
7.5 TranSPArEMNCYcccccvcierrerrrrenreesstesieeesrieseressessresnesseessessseessssssnsesnes
7.6 Plane Masking ...c.ccoooiiiiiinicieceece e
7.7 Pixel ProCesSingccccovieeciiieiiiiieeceiinineeseeeeesveescnnassesssssseeeeneesnne
7.8 Boolean Processing Examples ...
7.9 Multiple-Bit Pixel Operationscccccoceverrenmniccninersee e
7.10 WIndow Checkingocoieiieiiiieee ettt

7-1

Graphics Operations - Overview

7.1 Graphics Operations Overview

The TMS34010 instruction set provides several fundamental graphics drawing
operations:

® The PIXBLT and FILL instructions manipulate two-dimensional arrays
of pixels.

® The LINE instruction impiements the fast inner loop of the Bresenham
algorithm for drawing lines.

® The DRAV (draw and advance) instruction draws a pixel and increments
the pixel address by a specified amount. This function supports the im-
plementation of incremental algorithms for drawing circles, ellipses, arcs,
and other curves.

® The PIXT (pixel transfer) instruction transfers individual pixels from one
location to another.

The PIXBLT instruction plays an important role in rapidly drawing high-
quality, bit-mapped text. In particular, the PIXBLT B,XY and PIXBLT B,L in-
structions expand character patterns stored as bit maps (at one bit per pixel)
into color or gray-scale characters of 1, 2, 4, 8 or 16 bits per pixel. This allows
character shape information to be stored independently of attributes such as
color and intensity, providing greater storage efficiency.

The TMS34010 provides several methods for processing the values of the
source and destination pixels before the result is written to the destination.
These operations include:

® Boolean and arithmetic pixel processing operations for combining source
pixels with destination pixels.

® A plane mask which specifies which bits within pixels can be altered
during pixel operations.

® Transparency, an option which permits objects written onto the screen
to have transparent regions through which the background is visible.

Pixel processing, plane masking, and transparency can be used simuitane-
ously. These operations on pixel values can be used in combination with any
of the pixel drawing instructions listed above. The arithmetic operations are
especially important in displays that use multiple bits per pixel to encode color
or intensity information. For example, the MAX and MIN operations allow two
objects with antialiased edges to be smoothly merged into a single image.

The TMS34010 has features such as automatic window checking to support
windowed graphics environments. Three window-checking modes are pro-
vided:

{] Clipping a figure to fit a rectangular window.

® Requesting an interrupt on an attempt to write to a pixel outside of a
window.

Graphics Operations - Overview

(] Requesting an interrupt on an attempt to write to a pixel /nside of a
window.

The last of these modes can be used to identify screen objects that are pointed
to by a cursor. The window checking modes can be used with any of the pixel
drawing instructions that use XY addressing. Window checking is optional
and can be turned off.

The TMS34010 provides further support for windowed environments by rap-
idly detecting the following conditions:

L] Whether a point lies inside or outside a rectangular window.

[) Whether a /ine lies entirely inside or entirely outside a window.

Lines that lie entirely outside a window can be trivially rejected, meaning that
they take no further processing time. These conditions are detected via the
CPW (compare point to window) instruction, which takes only one machine
state to compare the XY coordinates of a point to all four sides of a window.

Another operation that occurs frequently in windowed environments is calcu-
lating the region where two rectangles intersect. This is a feature available
with the PIXBLT and FILL instructions. Based on the window-checking
mode, one of two methods can be selected to calculate the region of inter-
section:

[] The destination pixel array is preclipped to a rectangular window before
the PixBlIt or fill operation begins.

® The intersection of the destination pixel array with a rectangular window
is calculated, but no pixels are transferred.

7-3

Graphics Operations - Pixel Block Transfers

7.2 Pixel Block Transfers

7-4

The TMS34010 supports a powerful set of raster operations, known as
PixBlts (pixel block transfers), that manipulate two-dimensional arrays of bits
or pixels. A pixel array is defined by the following parameters:

® A starting address (by default, the address of the pixel with the lowest
address in the array)

[) A width DX (the number of pixels per row)
{ A height DY (the number of rows of pixels)

® A pitch (the difference between the starting addresses of two successive
rows)

A pixel array appears as a rectangular area on the screen. The array pitch is the
same in this case as the pitch of the display. The default starting address is
the address of the pixel in the upper left corner of the rectangle. (This assumes
that the ORG bit in the DPYCTL register and the PBH and PBV bits in the
CONTROL register are all set to their default values of 0.)

Two operands must be specified for a PIXBLT instruction:

® A source pixel array and
® A destination pixel array

The two arrays must have the same width and height, although they may have
different pitches. Each pixel in the source array is combined with the corre-
sponding pixel of the destination array. A Boolean or arithmetic pixe/ proc-
essing operation is selected and applied to the PIXBLT operation. The default
pixel processing operation is rep/ace. |f replace is selected, source pixel values
are simply copied into destination pixels.

Before executing a PIXBLT instruction, load the following parameters into the
appropriate GSP internal registers:

DYDX Composed of two portions:‘ DX, which specifies the width of the
array, and DY, which specifies the height of the array.

PSIZE Pixel size (number of bits per pixel).
SADDR Starting address of source array (XY or linear address).
DADDR Starting address of destination array (XY or linear address).

SPTCH Source pitch, or difference in memory addresses of two vertically
adjacent pixels in the source array.

DPTCH Destination pitch, or difference in memory addresses of two verti-
cally adjacent pixels in the destination array.

If either the source or destination array is specified in XY format, the contents
of the CONVSP and CONVDP registers will be used in instances in which the
Y component of the starting address must be adjusted prior to the start of the

Graphics Operations - Pixel Block Transfers

PixBit. The Y component may require adjustment, either to preclip the array
or to select a starting pixel in one of the lower two corners of the array.

Pitches and starting addresses must be specified separately for the two arrays
(source and destination). The width, height, and pixel size are common to
both arrays. (During a color expand operation, only the destination pixel size
is specified; the source pixel size is assumed to be one bit.)

The starting address of a pixel array can be specified as a linear (memory)
address or as an XY address. Window checking can be used only when the
destination array is pointed to by an XY address.

On-screen objects may be defined as XY arrays but may be more efficiently
stored as linear arrays in off-screen memory. An array specified in linear format
can be transferred to an array specified in XY format (and vice versa) by means
of the PIXBLT L XY and PIXBLT XY,L instructions.

The FILL instruction fills a specified destination pixel array with the pixel value
specified in the COLOR1 register. A fill operation can be thought of as a
special type of PixBlt that does not use a source pixel array. The source pixel
value used in pixel processing is the value in the COLOR?1 register. The des-
tination array of a FILL instruction can be specified in either XY or linear for-
mat.

7.2.1 Color-Expand Operation

The TMS34010 allows shape information to be stored separately from attri-
butes such as color and intensity. A shape can be stored in compressed form
as a bit map containing 1s and Os. The color information is added as the shape
is drawn to the screen; the 1s in the bit map are expanded to the specified
Color 1 value, and the Os are expanded to the Color O value. This saves a
significant amount of memory when the pixel size in the display memory is two
bits or more.

Two PIXBLT instructions, PIXBLT B,XY and PIXBLT B,L, provide the color-
expand capability. The source array for either instruction is a bit map (one bit
per pixel) stored off-screen in linear format for greater storage efficiency. The
destination array can be specified in either XY or linear format. The pixel size
for the destination array is governed by the value in the PSIZE register. The
colors to which the 1s and Os in the source array are expanded are specified
in the COLOR1 and COLORO registers.

A primary benefit of the color-expand capability is the reduction in table area
needed to store text fonts. Font bit maps are stored in compressed form at one
bit per pixel. The color-expand operation adds color to a character shape at
draw time, allowing color to be treated as an attribute separate from the shape
of the character. The alternative would be to store the fonts in expanded form,
which can be costly. The amount of table storage necessary to store red letters
A-Z, blue letters A-Z, and so on, multiplied by the number of font styles
needed for an application program, would be prohibitive. Furthermore, the
color-expand operation is inherently faster than using pre-expanded fonts
because far fewer bits of character shape information have to be read from the
font table when a character is drawn to the screen.

Figure 7-1 shows the expansion of a bit map, one bit per pixel and four bits
wide, into four 4-bit pixels (transforming 0-1-1-0 into yellow-red-red-yellow,

7-5

Graphics Operations - Pixel Block Transfers

7-6

for example). Before transferring the expanded source array to the destination
array, any of the Boolean or arithmetic pixel processing operations can be ap-
plied.

Four bits per pixel sxample
of color expand

i1l Four bit binary or unexpanded image
Gkl GO O EEEm s
OO GO COE EOIer somone

Execute Expand

/

e e e e

Resulting 18-bit expanded image

Figure 7-1. Color-Expand Operation

The expand function is also useful in applications that generate shapes or
patterns dynamically. During the first stage of this process, a compressed im-
age is constructed in an off-screen buffer area at one bit per pixel. The image
is built up of geometric objects such as rectangles, circles or polygons. Pat-
terns can also be added. When complete, the compressed image is color-
expanded onto the screen. This method defers the application of color and
intensity attributes untif the final stage.

Combining color expand with the replace-with-transparency operation yields
a new operation that is particularly useful in drawing overlapping or kerned
text. The color value used to replace the Os in the source array is selected by
the programmer as ail Os, which is the transparency code. The GSP defers the
check for transparency until after the color-expand operation has been per-
formed. As the color-expand operation is performed, the Os in the source array
are expanded to all 0s. Only the pixels in the destination array that correspond
to nontransparent pixels in the resulting source array are replaced.

The PIXBLT B,XY and PIXBLT B,L instructions can be used in conjunction
with pixel processing, transparency and plane masking. Source pixels are ex-
panded before being processed. Window checking can be used with PIXBLT
B, XY.

Graphics Operations - Pixel Block Transfers

7.2.2 Starting Corner Selection

+X

The default starting address of a pixel array is the lowest pixel address in the
array. When an array is displayed on the screen, as shown in Figure 7-2 a, the
starting address is the address of the pixel in the upper left corner of the array.
(The XY origin is located in its default position at the upper left corner of the
screen.) During a PixBlt operation, this pixel is processed first. The PixBlt
processes pixels from left to right within each row, beginning at the top row
and moving toward the bottom row. The pixel at the lower right corner of the
array is processed last.

Certain PixBlt operations allow any of the other three corners to be used as the
starting location. This may be necessary, for instance, if the source and des-
tination arrays overlap. The sequence in which pixels are moved when the
arrays overlap should be controlled so as to not overwrite the pixels in the
source array before they are written to the destination array.

Figure 7-2 shows how the PBV and PBH bits in the CONTROL register de-
termine the starting corner for the PixBIt operation. The starting corner is in-
dicated for each of four cases. PBH selects movement in the X direction, from
left to right or right to left. PBV selects movement in the Y direction, from top
to bottom or bottom to top.

+Y
Pixel Array Pixel Array __
Address ddress
PBH=0, PBV=0 PBH=1, PBV=0
Pixel Array Pixel Array
Address » Address
PBH=0, PBV=1 PBH=1, PBV=1

Note: Starting corners are shaded.

Figure 7-2. Starting Corner Selection

7-7

Graphics Operations - Pixel Block Transfers

PBH=0 The PixBIt processes pixels from left to right; that is, in the direction
of increasing X.

PBH=1 The PixBlt processes pixels from right to left; that is, in the direction
of decreasing X.

PBV=0 The PixBIt processes rows from top to bottom; that is, in the di-
rection of increasing Y.

PBV=1 The PixBIt processes rows from bottom to top; that is, in the di-
rection of decreasing Y.

All the pixels in one row are processed before moving to the next row.

When one or both of the arrays is specified in XY format, the GSP automat-
ically calculates the actual starting address (specified by PBH and PBV) from
the default starting address (that is, the lowest pixel address in the array) and
the width and height of the array. Automatic starting address adjustment is
available with the following instructions:

® PIXBLT L XY
® PIXBLT XY,L
® PIXBLT XY, XY

The programmer supplies the default starting addresses for these PixBlts in the
SADDR and DADDR registers. During the course of instruction execution,
SADDR and DADDR are automatically adjusted to the address of the corner
selected by PBH and PBV.

When both arrays are specified in linear format, the starting addresses of the
appropriate corner pixels must be provided by the programmer. The PIXBLT
L,L instruction allows any of the four corners to be used as the starting lo-
cation, but in this case the programmer must adjust the addresses in SADDR
and DADDR to the corner selected by PBH and PBV.

7.2.3 Interrupting PixBlts and Fills

7-8

PIXBLT and FILL are interruptible instructions. An interrupt can occur during
execution of one of these instructions; when interrupt processing is com-
pleted, execution of the PIXBLT or FILL resumes at the point at which the in-
terruption occurred.

The execution time of a PIXBLT or FiLL instruction depends on the specified
pixel array size. In order to prevent high-priority interrupts from being delayed
until completion of PixBlts and fills of large arrays, the PIXBLT and FILL in-
structions check for interrupts at regular intervals during their execution.

When a PIXBLT or FILL instruction is interrupted the PBX (PixBit executing)
status bit is set to 1. This records the fact that the interrupt occurred during
a pixel array operation. The PC and the ST are pushed onto the stack, and
control is transferred to the appropriate interrupt service routine. At the end
of the interrupt service routine, an RETI (return from interrupt) instruction is
executed to return control to the interrupted program. The RETI instruction

Graphics Operations - Pixel Block Transfers

pops the ST and PC from the stack. When the PBX bit is detected, execution
of the interrupted PIXBLT or FILL instruction resumes.

At the time of the interrupt, the state of the PIXBLT or FILL instruction is saved
in certain B-file registers. The source and destination address registers contain
intermediate values. The source and destination pitches may aiso contain in-
termediate values, depending on the instruction. The SADDR, SPTCH,
DADDR, DPTCH registers and registers B10-B14 (as well as the original set
of implied operands) contain the information necessary to resume the in-
struction upon return from an interrupt.

If the interrupt routine uses any of these registers, they should be saved on the
stack and restored when interrupt processing is complete. By following this
procedure, PIXBLT or FILL instructions can be safely executed within interrupt
service routines.

Note:

The PBX bit is not set to 1 when a PIXBLT or FILL instruction is aborted
due to a window violation.

7-9

Graphics Operations - Pixel Transfers/Incremental Algorithm Support

7.3 Pixel Transfers

The TMS34010 uses the PIXT (pixel transfer) instructions to transfer individ-
ual pixels from one location to another. The following pixel transfers can be
performed:

® From an A- or B-file register to memory,
® From memory to an A- or B-file register, or
® From one memory location to another.

The address of a pixel in memory can be specified in XY or linear format. Li-
near addresses must be pixel aligned.

The pixel size for all PIXTs is specified by the value in the PSIZE register. Pixel
sizes are restricted to 1, 2, 4, 8, or 16 bits to facilitate XY address computa-
tions, window checking, transparency, and arithmetic pixel processing.

The PIXT instruction can be used in conjunction with window checking,
Boolean or arithmetic pixel processing, plane masking, and transparency.

7.4 Incremental Algorithm Support

The TMS34010 supports incremental drawing algorithms via its DRAV (draw
and advance) and LINE instructions. The DRAV instruction is used primarily
in the construction of algorithms for incrementally drawing circles, ellipses,
arcs, and other curves. The DRAV instruction can also be used in the inner
loop of aigorithms for drawing straight lines incrementally. Lines, however,
are treated as a special case by the TMS34010 in order to achieve even faster
drawing rates. A separate instruction, LINE, implements the entire inner loop
of the Bresenham algorithm for drawing lines.

The DRAV (draw and advance) instruction draws a pixel to a location pointed
to by a register; the pointer register is then incremented to point to the next
pixel. The pointer is specified as an XY address. The X and Y portions of the
address are incremented independently, but in parallel. The value written to
the destination pixel in memory is taken from the COLOR1 register.

The DRAYV instruction is embedded in the inner loop of an incremental algo-
rithm to speed up its execution. As an incremental algorithm piots each pixel
on a curve, it also determines where the next pixel will be drawn. The next
pixel is typically one of the eight pixels immediately surrounding the pixel just
plotted on the screen. Advancing in this manner, the algorithm tracks the
curve from one end to the other.

The DRAV and LINE instructions may be used in conjunction with Boolean
or arithmetic pixel processing operations, window checking, plane masking
and transparency.

Graphics Operations - Transparency

7.5 Transparency

When a PixBlt is used to draw an object to the screen, some of the pixels in
the rectangular pixel array that contains the object may not be part of the ob-
ject itself. Transparency is a mechanism that allows surrounding pixels in
the array to be specified as invisible. This is useful for ensuring that only the
object, and not the rectangle surrounding it, is written to the screen.

Transparency is enabled by setting the T bit in the CONTROL register to 1, or
disabled by setting the T bit to 0. When enabled, a pixel that has a value of 0
is considered transparent, and will not overwrite a destination pixel. Trans-
parency detection is applied not to the source pixel values, but to the pixel
values resulting from plane masking and pixel processing. When an operation
performed on a pair of source and destination pixels yields a O result, the GSP
detects this and prevents the destination pixel from being altered. In the case
of pixel processing operations such as AND, MIN, and replace, a source pixel
value of O ensures that the result of the operation will be a transparent pixel.

Figure 7-3 illustrates how transparency works in the GSP. Assuming four bits
per pixel, the hardware must detect strings of Os of length four falling between
pixel boundaries. While bit strings A and B are both of pixel length, only
string A is detected as transparent. String B crosses the pixel boundary. The
memory interface logic generates an internal mask to govern which bits are
modified during a write cycle. This mask contains Os in the bits corresponding
to the transparent pixel. Only destination bits corresponding to 1s in the mask
will be modified.

"—String A-' "— String B—-'

1]oooo|1ooob1

(=]

Data to be written ro 1

-
o
b

1/0 0 0 0 11 1|1 1

-
_—

-
-

Mask generated l 1

Data to be modified |JA A A AlB B B Bfc ¢ c c|p p p pJ

(=]

Resulting data fo 10 1]/B B B Bf1 0 0 0f0 1

Note: This example assumes four bits per pixel.

Figure 7-3. Transparency

Figure 7-7 (page 7-17) and Figure 7-8 (page 7-20) illustrate several pixel
processing operations. Figure 7-8 h shows an example of a replace operation
performed with transparency enabled. The pixels surrounding the letter A
pattern in the source array are transparent (all 0s). Compare Figure 7-8 h with
Figure 7-7 d; this replace-with-transparency operation is analogous to the
logical OR operation in a one-bit-per-pixel display.

Transparency can be used with any instruction that writes to pixels, including
the PIXBLT, FILL, DRAYV, LINE, and PIXT instructions. Transparency does not
affect writes to non-pixel data.

Graphics Operations - Plane Masking

7.6 Plane Masking

The plane mask is a hardware mechanism for protecting specified bits within
pixels. Mask-protected pixels will not be modified during graphics in-
structions. The plane mask allows the bits within pixels to be manipulated as
though the display memory were organized into bit planes (or color planes)
that can selectively be protected from modification. The number of planes
equals the number of bits per pixel.

Consider an example in which the pixel size is four bits. The bits within each
pixel are numbered 0-3, and belong to planes 0-3, respectively. All the bits
numbered O in all the pixels form plane 0, all the bits numbered 1 in all the
pixels form plane 1, and so on.

The plane mask allows one or more planes to be manipulated independently
of the other planes. Given four planes of display memory, for example, three
of the planes can be dedicated to eight-color graphics, while the fourth plane
can be used to overlay text in a single color. The plane mask can be set so that
the text plane can be modified without affecting the graphics planes, and vice
versa.

The PMASK register contains the plane mask. Each bit in the plane mask
corresponds to a bit position in a pixel. The 1s in the mask designate pixel
bits that are protected, while Os in the mask designate pixel bits that can be
modified. Those pixel bits that are protected by the plane mask are always
read as Os during read cycles, and are protected from alteration during write
cycles. While no single control bit enables or disables plane masking, it is ef-
fectively disabled by setting PMASK to all Os; this is the default condition
following reset.

The logical width of a quantity in the plane mask is the same as the pixel size.
However, in order to maintain a consistent effect on all of the pixels within a
destination region, regardless of their position within the destination words,
you should replicate the mask for a single pixel to fill the entire 16-bit PMASK
register. (To provide upward compatibility with future versions of the GSP,
you should replicate the plane mask through the 32 bits beginning at address
C0000170h.) For example, if the pixel size is four bits, the 4-bit mask is rep-
licated four times within PMASK; in bits 0-3, 4-7, 8-11, and 12-15. These
four copies of the mask are applied to the four pixels in a word written to or
read from memory. A 16-bit PMASK value for pixels of 1, 2, 8, or 16 bits is
constructed similarly by replicating the mask 16, 8, 2, or 1 times, respectively.

The plane mask affects only pixel accesses performed during execution of the
PIXBLT, FILL, PIXT, DRAV, and LINE instructions. Data accesses by non-
graphics instructions are not affected.

The following list summarizes operation of the PMASK register during pixel
reads and writes:

® Pixel Read:

The 0s in PMASK correspond to unprotected bits in the source pixel that
are seen by the GSP to contain the actual values read from memory.

The 1s in PMASK correspond to protected bits in the source pixel that
are seen as Os by the GSP, regardless of the values read from memory.

Graphics Operations - Plane Masking

[] Pixe! Write:

The Os in PMASK specify those bits in the destination pixel in memory
which may be altered.

The 1s in PMASK specify protected bits in the destination pixel which
cannot be altered.

When a pixel is being transferred from a source to a destination location, plane
masking is applied to the values read from the source and destination before
pixel processing is applied. As the operands are read from memory, the bits
protected by the plane mask are replaced with Os before the specified Boolean
or arithmetic pixel processing operation is performed. and destination before
pixel processing is applied. Transparency detection is performed on the result
of this operation. When the result is written back to the destination, those bits
of the destination that are protected by the plane mask are not modified.

Source pixels that originate from registers are not affected by the plane mask,
and undergo pixel processing in unmodified form. The FiLL, DRAV, LINE,
PIXT Rs,*Rd, and PIXT Rs,*Rd.XY instructions obtain their source pixels from
registers.

Figure 7-4 shows how special hardware in the local memory interface of the
TMS34010 applies the plane mask to pixel data during a read cycle. The pixel
size for this example is eight bits per pixel. This could represent the execution
of a PIXT *Rs.XY,Rd instruction, for instance.

Move this pixel
Into a GSP register
15(MSB) 8 7 1 LSB
(a) Original data inmemory (2 pixels) |[A A A A A A A A|B B B B B B B B
(b) Plane mask (PMASK) [t 1 o o 1+t 0o o 0of1t 1. 0 0 1 0 0 0]}
(c) Data read Into GSP register o o o 0 0 0o 0 o{o 0o B B 0 B B B}

Notes: 1. This example assumes eight bits per pixel.
2. The pixel moved into the GSP register is left justified. All register bits to the left of
the pixel are zero filled.

Figure 7-4. Read Cycle With Plane Masking

(] Figure 7-4 a shows the 16-bit word containing the pixel as it is read
from memory.

° The word is ANDed with the inverse of the plane mask shown in b.

® The result in Figure 7-4 ¢ shows that the bits within the data word that
correspond to 1s in the mask have been set to Os.

Graphics Operations - Plane Masking

After plane masking, the designated pixel is loaded into the eight LSBs of the
32-bit destination register, and the 24 MSBs of the register are filled with Os.

Figure 7-5 shows the effect of combining plane masking with pixel transpar-
ency. Again, the performance of the special hardware in the local memory
interface controller is demonstrated. The example shows the transfer of two
pixels during the course of a PixBlt operation with transparency enabled, the
pixel size set at eight bits, and the rep/ace pixel processing operation. The
inverse of PMASK is ANDed with the source data, and transparency detection
is applied to the resulting entire pixel. In other words, the result is used to
control the write in the manner described in the previous discussion of pixel
transparency. Since the three LSBs of the source pixel in bits 8-15 are Os, and
the rest of the pixel is masked off, the entire source pixel is interpreted as
transparent. The memory interface logic generates an internal mask to govern
which bits are modified during a write cycle. This mask contains Os in the bits
corresponding to the transparent pixel.

16(MSB) 8 7 0(LSB)

(a) Original data In memory (2 pixels) |A A A AAAAAIB B BB B B B Bl

() ource data In memory Yy ~v~voo0olzzzzzzzz]
(c) Plane mask (PMASK) 1+ 111 1. 00 0[t 1 1 1 100 0]

d) Mask source data for trans—
()parencydotecﬁon(SRCom Lo oo o0 o oo ofjo oo 00z 2z z]

(e) Transparency mask fo oo 0o 0o 0 Of1 1 1 1 1 1 1 1]

(0 Combined mask (PMASK e trans- [0 000 000]00000 1 1 1]

(g) Resuiting memory data after JA A A A A AAAlB BB BB Z 2z 2|

write cycle (Combined Mask ¢
SRC DAT:) + Combined Maske

Note: This example assumes eight bits per pixel.

Figure 7-5. Write Cycle With Transparency and Plane Masking

Figure 7-5 a shows the original data at the destination location.

b shows the source data.

In ¢, the source data is ANDed with the inverse of the plane mask.
d shows the intermediate result produced by c.

This result is used to generate the transparency mask in e, which is
ANDed with the inverse of the plane mask in ¢ to produce the composite
mask shown in £.

The result in G is produced by replacing with the source only those bits
of the destination corresponding to 1s in the composite mask in 7.

Graphics Operations - Pixel Processing

7.7 Pixel Processing

Source and destination pixel values can be combined according to the pixe/
processing operation (or raster operation) selected. The TMS34010’s pixel
processing operations include 16 Boolean and 6 arithmetic operations. The
Booleans are performed in bitwise fashion on operand pixels of 1, 2, 4, 8, or
16 bits. The arithmetic operations treat operand pixels of 4, 8, or 16 bits as
unsigned binary numbers.

When a pixel is read from its source location, it is arithmetically combined with
the corresponding destination pixel according to the Boolean or arithmetic
pixel processing option selected, and the result is written to the destination
pixel. The pixel processing operation is selected by the PPOP field in the
CONTROL register. Table 7-1 and Table 7-2 list the 22 PPOP codes and their

meanings.

Table 7-1. Boolean Pixel Processing Options

PPOP Field Operation
00000 Source —* Destination
00001 Source AND Destination — Destination
00010 Source AND ~ Destination —* Destination
00011 Os — Destination
00100 Source OR ~ Destination = Destination
00101 Source XNOR Destination = Destination
00110 ~ Destination = Destination
00111 Source NOR Destination — Destination
01000 Source OR Destination = Destination
01001 Destination = Destination
01010 Source XOR Destination = Destination
01011 ~Source AND Destination — Destination
01100 1s - Destination
01101 ~Source OR Destination = Destination
01110 Source NAND Destination — Destination
01111 ~Source = Destination

Table 7-2. Arithmetic (or Color) Pixel Processing Options

PPOP Field Operation
10000 Source + Destination = Destination
10001 ADDS(Source, Destination) — Destination
10010 Destination - Source = Destination
10011 SUBS(Source, Destination) = Destination
10100 MAX(Source, Destination) — Destination
10101 MIN(Source, Destination) — Destination
10110-11111 Reserved

Graphics Operations - Pixel Processing

7-16

In Table 7-2, pixel processing codes 100002 and 100107 correspond to stan-
dard 2s complement addition and subtraction. A result that overflows the
specified pixel size causes the pixel value to wrap around within its 4, 8, or
16-bit range. Carry bits are, however, prevented from propagating to adjacent
pixels.

The ADDS (add with saturation) and SUBS (subtract with saturation) oper-
ations shown in Table 7-2 produce resuits identical to those of standard ad-
dition or subtraction, except when arithmetic overflow occurs. When the
ADDS operation would produce an overflow result, the result is replaced with
all 1s. When the SUBS operation would produce an underflow result, the re-
sult is replaced with all Os.

The MAX operation shown in Table 7-2 compares the source and destination
pixels and then writes the greater value to the destination location. The MIN
operation is similar, but writes the lesser value to the destination.

Figure 7-6 depicts the interaction of pixel processing with other graphics op-
erations when a source pixel is transferred to a destination pixel. Note that this
is a general description; some of these operations do not occur if they are not
selected. Pixels are first read from memory and modified by the piane mask.
Pixel processing is then performed on the modified pixel values. The plane
mask is applied to the result. Bits which are 1s in the PMASK produce O bits
in the result of this process. Thus, some processed pixels may become trans-
parent as the result of plane masking. Next, transparency detection is applied
to the data, and finally, a read-modify-write operation is invoked.

Read Readt

PMASK PMASK

|
s

PMASK J

*

Transparency
Detect

Read-Modify-Write

Destination
Pixel

T Not perfor}ned if replace is selected.
t Only performed when plane masking or transparency is active and the pixel size is not
16, or the data being written is not word-aligned.

Figure 7-6. Graphics Operations interaction

Graphics Operations - Boolean Processing Examples

7.8 Boolean Processing Examples

Figure 7-7 illustrates the effects of five commonly used Boolean operations
when applied to one-bit pixels. Black regions contain Os, and white regions
contain 1s. Figure 7-7 a and b show the original source and destination ar-
rays. The source operand in a is the letter A, and the destination in b is a
calligraphic-style X.

A

A

(C) REPLACE

(A) BOURCE ARRAY

(8

Y
v\

ORIGINAL DESTINATION
ARRAY

(F) AND

(D) OR

A

d

(G) XOR

(E) AND-NOT

Figure 7-7. Examples of Operations on Single-Bit Pixels

Graphics Operations - Boolean Processing Examples

7.8.1 Replace Destination with Source

A simple replacement operation overwrites the pixels of the destination array
with those of the source. Figure 7-7 ¢ shows the letter A written over the
center portion of a larger X using the replace operation. The rectangular region
around the letter A obscures a portion of the X lying outside the A pattern.
Other operations allow only those pixels corresponding to the A pattern within
the rectangle to be replaced, permitting the background pattern to show
through. These are the logical OR and logical AND-NOT (NOT source AND
destination) operations. The replace-with-transparency operation performs
similarly in color systems.

7.8.2 Logical OR of Source with Destination

Figure 7-7 d illustrates the use of the logical OR operation during a PixBit.
For a one-bit-per-pixel dispiay, the OR function leaves the destination pixels
unaltered in locations corresponding to Os in the source pixel array. Destina-
tion pixels in positions corresponding to 1s in the source are forced to 1s.

7.8.3 Logical AND of NOT Source with Destination

Logically ANDing the negated source with the destination is complementary
to the logical OR operation. Destination pixels corresponding to 1s in the
source array remain unaltered, but those corresponding to Os in the source are
forced to Os. Figure 7-7 e is an example of the AND-NOT PixBit operation

" (notice the negative image of the letter A). For comparison, Figure 7-7 f

shows the resuit of simply ANDing the source and destination.

7.8.4 Exclusive OR of Source with Destination

The XOR operation is useful in making patterns stand out on a screen in in-
stances where it is not known in advance whether the background will be 1s
or 0s. At every point at which the source array contains a pixel value of 1, the
corresponding pixel of the destination array is flipped — a 1 is converted to a
0, and vice versa. XOR is a reversible operation; by XORing the same source
to the same destination twice, the original destination is restored. These pro-
perties make the XOR operation useful for placing and removing temporary
objects such as cursors, and in “rubberbanding” lines. As seen in the example
of Figure 7-7 g, however, the object may be difficult to see if both the source
and destination arrays contain intricate shapes.

Graphics Operations - Multiple-Bit Pixel Operations

7.9 Multiple-Bit Pixel Operations

The Boolean operations described in Section 7.8 are sufficient for single-bit
pixel operations, but they may be inappropriate for multiple-bit pixel oper-
ations, especially when color is involved. For example, the result of a bit-
wise-OR operation on a black-and-white (one bit per pixel) display is easily
predicted - ORing black and white yields white. However, the meaning of this
operation is less intuitive when it is applied to multiple-bit pixels. For exam-
ple, in a population-density map, colors may be used to represent numeric
values. If one color, such as red, represents one level of population density,
and blue represents another, what happens when the two colors are bit-
wise-ORed? When pixels represent numeric values, numerical operations such
as addition and subtraction yield more useful results.

Boolean operations are usually inadequate for merging antialiased objects into
a single bit-mapped image. Older graphics systems that are limited to Boolean
operations on pixels are incapable of supporting many practical applications
on multiple-bit-per-pixel images. For instance, where two antialiased lines
cross, AND and OR operations yield chaotic pixel intensities that defeat the
purpose of the antialiasing. However, merging the two lines by means of the
GSP’s MAX operation (for white on black) or MIN operation (for black on
white) yields a smooth and aesthetically pleasing image.

7.9.1 Examples of Boolean and Arithmetic Operations

Figure 7-8 illustrates Boolean and arithmetic operations on multiple-bit pixels.
Figure 7-8 a illustrates a source array that contains a red letter A; the red pixels
have the value 8 (10002) and the black background pixels have the value 0
(00002). Figure 7-8 b shows the destination array, a yellow X; the yellow
pixels have the value 12 (11003) and the pixels in the blue background pixels
have the value 2 (00105).

Boolean operations can be applied to multiple-bit pixels by combining the
corresponding bits of each pair of source and destination pixels on a bit-by-bit
basis according to the specified Boolean operation. Figure 7-8 ¢ through g
show the effects of combining the source and destination arrays using the re-
place, OR, AND-NOT, AND, and XOR PixBIt operations. Compare these to
Figure 7-7 (page 7-17).

Arithmetic operations treat 4-bit, 8-bit, and 16-bit pixels as unsigned binary
numbers. An n-bit pixel represents a positive integer in the range 0 to 2"-1
(all 1s). Examples of arithmetic operations on source and destination pixels
are shown in Figure 7-8 / through n and discussed in Section 7.9.1.1 through
Section 7.9.1.4.

(a) Source (b) Destination

Figure 7-8. Examples of Boolean and Arithmetic Operations

Graphics Operations - Multiple-Bit Pixel Operations

(c) Src Replaces Dst (d) Src OR Dst (e) Src AND Dst

‘?L- I

(f) Src AND Dst (g) Src XOR Dst (h) Replace with
Transparency

- -

(i) Add (j) Subtract (k) Add with Saturation

(1) Subtract with (m) MAX (n) MIN
Saturation

Figure 7-8. Examples of Boolean and Arithmetic Operations (Concluded)

7-20

Graphics Operations - Multiple-Bit Pixel Operations

7.9.1.1 Figure 7-8 i and j - Simple Addition and Subtraction

Figure 7-8 7 shows the result of adding the source and destination arrays.
Simple binary 2s complement addition is used. When the sum of the two
pixels exceeds the maximum pixel value, the result overflows. Figure 7-8
shows the result of subtracting the source array from the destination array.
Underflow occurs for those pixels whose calculated difference is negative.

Simple addition and subtraction are complementary operations. They are re-
versible operations in the same sense as the XOR operation - by adding a
source pixel to a destination pixel, and then subtracting the same source pixel,
the original destination pixel is recovered.

7.9.1.2 Figure 7-8 k and I - Add and Subtract with Saturate

The add and subtract operations described in Section 7.9.1.1 are binary 2s
complement operations which allow overflow and underflow. An add-with-
saturate operation stops the result at the maximum unsigned value without
allowing the result to overflow. For example, with four bits per pixel, adding
00102 to 11107 produces 11115. Similarly, a subtract-with-saturate operation
stops the result at 0 without allowing it to underflow.

Figure 7-8 k and / illustrate examples of addition with saturation and sub-
traction with saturation. In these examples, the pixel size is four bits. By
dedicating a different color to each value, the effects of each PixBit operation
become more visible. '

An alternate method of encoding 4-bit pixels uses the 16 values 0 to 15 to
represent increasing intensities of a single color component: red, green, and
blue. The addition and subtraction operations now have obvious meaning -
increasing or decreasing the intensity by specified amounts. At 12 bits per
pixel, four bits of intensity can be dedicated to each of the three color com-
ponents. Arithmetic operations are then performed on the corresponding
components of each pair of source and destination pixels.

Figure 7-9 (page 7-22) presents examples in which the pixel values represent
intensities of a gray from black to white.

7.9.1.3 Figure 7-8 m - Maximum

Figure 7-8 m illustrates the results of the MAX operation on the source and
destination arrays. MAX compares two pixel values and replaces the destina-
tion pixel with the larger value. In some respects, MAX is the arithmetic
equivalent of the Boolean OR function (compare Figure 7-8 m with Figure 7-7
b). The use of MAX in gray-scale and color displays is similar to that of OR
in simple black and white.

If the most-significant bits in each pixel are assigned to represent object pri-
ority (whether an object appears in front of or behind another object), the
MAX operation can be used to replace only those pixels of the destination ar-
ray whose priorities are lower than those of the corresponding pixels in the
source array. This allows an object to be drawn to the screen so that it appears
either in front of or behind other objects previously drawn. In Figure 7-8 m
the red A has a numerical value that is greater than that of the blue back-
ground, but less than that of the X.

The MAX function is also usefu! for smoothly combining two antialiased ob-
jects that overlap.

7-21

Graphics Operations - Multiple-Bit Pixel Operations "

7.9.1.4 Figure 7-8 n - Minimum

Figure 7-8 n illustrates the results of the MIN operation on the source and
destination arrays. MIN compares two pixel values and replaces the destina-
tion pixel with the smaller value. MIN is similar to the Boolean AND function.
MIN can be used with priority-encoded pixel values, similar to MAX, but the
effect is reversed. In Figure 7-8 n, the priorities of the two objects are reversed
from that of the MAX example shown in Figure 7-8 m. The MIN operation
also has uses similar to those of MAX in smoothly combining antialiased ob-
jects that overlap.

7.9.2 Operations on Pixel Intensity

Figure 7-9 illustrates the visual effects of various PixBlt operations on two
intersecting disks. In these examples, each pixel is a four-bit value represent-
ing an intensity from O (black) to 15 (white). Before the PixBlt operation,
only a single disk resides on the screen, as shown in Figure 7-9 a. The in-
tensity of the disk is greatest at the center (where the value is 12), and grad-
ually falls off as the distance from the center increases. Figure 7-9 b through
f show the effects of combining a second, identical disk with the first. Figure
7-9 b through e are produced using arithmetic operations; f is the result of a
logical OR of the source and destination. These operations are discussed in
Section 7.9.2.1 through Section 7.9.2.4.

(a) Original Disk (b)Replace with Transparency (c) Add

(d) Add with Saturate (e) MAX (f) OR

7-22

Figure 7-9. Examples of Operations on Pixel Intensity

Graphics Operations - Multiple-Bit Pixel Operations

The gradual change in intensity at the edge of the disk in Figure 7-9 a is similar
to the result produced by certain antialiasing techniques whose purpose is to
reduce jagged-edge effects. A text font might be stored in antialiased form,
for example, to give the text a smoother appearance. When two characters
from the font table are PixBlt'd to adjacent positions on the screen, they may
overlap slightly. The particular arithmetic or Boolean operation selected for the
PixBlt determines the way in which the antialiased edges of the characters are
combined within regions of overiap.

7.9.2.1 Figure 7-9 b - Replace with Transparency

In Figure 7-9 b, a second disk is PixBlt'd into a position near the first disk. A
replace-with-transparency operation is performed. Those pixels of the first
disk that lie within the rectangular region containing the second disk, but are
not part of the second disk, remain intact. The visual effect is that the second
disk (at the right) appears to lie in front of the original disk (at the left).
However, assuming that the gradual change in intensity at the perimeter of the
disks is done for the purpose of antialiasing, the sharp edge that results where
the second disk covers the first defeats this purpose. In other applications, this
sharp edge may be desirable; for example, it might be used to make a text
character or a cursor stand out from the background. The replace-with-
transparency operation also supports object priority by writing objects to the
screen in ascending order of priority.

7.9.2.2 Figure 7-9 ¢ - Add with Overflow and Subtract with Underflow

In Figure 7-9 ¢, a second disk is PixBlt'd into an area overlapping the first disk,
using an add-with-overflow operation. In this example, when 1 is added to
an intensity of 15, the sum is truncated to four bits to produce the result 0.
The effect of arithmetic overflow is visible at the intersection of the two disks
as discontinuities in intensity.

This effect is useful for making objects stand out against a cluttered back-
ground. Add with overflow has an additional benefit - the object can be re-
moved by subtracting (with underflow) the object image from the screen.

7.9.2.3 Figure 7-9 d - Add and Subtract with Saturation

In Figure 7-9 d, the original disk is on the left. A second disk is PixBlt'd into
a region overlapping the original disk, using an add-with-saturate operation.
Whenever the sum of two pixels exceeds the maximum intensity value, which
is 15 for this example, the sum is replaced with 15. The bright region that
occurs where the two disks intersect is produced when the corresponding
pixels of the two disks are added in this manner. Subtract-with-saturate is the
compliementary operation; when the difference of the two pixel values is neg-
ative, the sum is replaced by the minimum intensity value, O.

The add-with-saturate operation shown in Figure 7-9 d approximates the ef-
fect of two light beams striking the same surface; the surface is brightest in the
area in which the two beams overlap.

These operations can be used to achieve an effect similar to that of an airbrush
in painting. Consider a display system that represents each pixel as 12 bits,
and dedicates four bits each to represent the intensities of the three color

7-23

Graphics Operations - Multiple-Bit Pixel Operations

components, red, green, and blue. This method permits the intensity of each
component to be directly manipulated. With each pass of the simulated air-
brush over the same area of the screen, the color changes gradually toward the
color of the paint in the airbrush. For example, assume that the paint is yellow
(a mixture of red and green). Each time a pixel is touched by the airbrush, the
intensity of the red and green components is increased by 1, and the intensity
of the blue component is decreased by 1. With each sweep of the airbrush,
the affected area of the screen turns more yellow until the red and green
components reach the maximum intensity value (and are not allowed to over-
flow), and the blue component reaches 0 (and is not aliowed to underflow).

7.9.2.4 Figure 7-9 e - MAX and MIN Operations

7-24

In Figure 7-9 e, the original disk is on the left. A second disk is PixBlt'd into
the rectangular region to its right using the MAX operation. In the region in
which the disks overlap, each pair of corresponding pixels from the two disks
is compared and the greater value is selected. This produces a relatively
smooth blending of the two disks. Unlike add with saturate, the MAX function
does not generate a “hot spot” where two objects intersect.

The visual effect achieved using the MAX operation is desirable in an appli-
cation, for instance, in which white antialiased lines are constructed on top of
each other over a black background. MAX also smooths out places in which
the lines are overlapped by antialiased text. MAX is successful in maintaining
two visually distinct antialiased objects, while the add-with-saturate tends to
run them together.

MIN, which is complementary to MAX, can be used'similarly to smooth the
appearance of intersecting black antialiased lines and text on a white back-
ground.

The MAX and MIN operations are particularly usefu!l in color applications in
which the number of bits per color gun is small (eight bits or less). Other
operators could also be used to smooth the transition between the two over-
lapping antialiased objects in Figure 7-9 e, but any additional accuracy at-
tained by using a more complex smoothing function would probably be lost
in truncating the result to the resolution of the integer used to represent the
intensity at each point.

Graphics Operations - Window Checking

7.10 Window Checking

The TMS34010’s hardware window clipping confines graphics drawing op-
erations to a specified rectangular window in the XY address space. Other
window checking modes cause an interrupt to be requested on a window hit
or a window miss.

Window checking affects only pixel writes performed by the following graph-
ics instructions:

PIXBLT
FILL
LINE
DRAV
PIXT

Data writes by non-graphics instructions are not affected.

A window is a rectangular region of display memory specified in terms of the
XY coordinates of the pixels in its two extreme corners (minimum X and Y, and
maximum X and Y). The corner pixels are considered to lie within the window.
Window checking is available only in conjunction with XY addressing; it is not
available with linear addressing. Specifically, the destination pixel address
must be an XY address.

One of four window checking modes is selected by the value loaded into the
W field of the CONTROL register:

W=0: Window checking disabled. No window checking is performed.

W=1: Window hit detection. Request interrupt on attempt to write /nside
window.

W=2: Window miss detection. Request interrupt on attempt to write outside
window.

W=3: Window clipping. Clip all pixel writes to window.

When window checking is enabled (modes 1, 2 or 3), an attempt to write to
a pixel outside the window causes the V (overflow) bit in the status register
to be set to 1; a write (or attempt to write) to a pixel inside the window sets
V to 0. When window checking is turned off (mode 0), the V bit is unaffected
during pixel writes.

7-25

Graphics Operations - Window Checking

7.10.1 W=1 Mode - Window Hit Detection

7-26

The W=1 mode detects attempts to write to pixels within the window. This
form of window checking supports applications which permit objects on the
screen to be picked by pointing to them with a cursor. In this mode, all pixel
writes are inhibited, whether they address locations inside or outside the
window. A window violation interrupt is requested on an attempt to write to
a pixel inside the window.

For the PIXBLT and FILL instructions, the V (overflow) bit is set to 1 if the
destination array lies completely outside the window. No interrupt request is
generated (the WVP bit in the INTPEND register is not affected) in this case.
However, if any pixel in the destination array lies within the window, the V
bit is set to O and a window violation interrupt is requested (the WVP bit is
setto 1). If the interrupt is enabled, the saved PC points to the instruction that
follows the PIXBLT or FILL that caused the interrupt. If the interrupt is disa-
bled, execution of the next instruction begins.

While no pixel transfers occur during the PIXBLT and FILL instructions exe-
cuted in this mode, the specified destination array is clipped to lie within the
window. In other words, the DADDR and DYDX registers are adjusted to be
the starting address, width, and height of the reduced array that is the inter-
section of the two rectangles represented by the destination array and the
window. This function can be adapted to determine the intersection of two
arbitrary rectangles on the screen - a calculation that is often performed in
windowed graphics systems.

In the case of a DRAV or PIXT instruction, an attempt to write to a pixel out-
side the window causes the V bit to be set to 1. No interrupt request is gen-
erated (the WVP bit is not affected). An attempt to write to a pixel inside the
window causes the V bit to be set to 0, and a window violation interrupt re-
quest is generated (the WVP bit is set to 1).

At the end of a LINE instruction, the V bit is O if any destination pixel proc-
essed by the instruction lies within the window; otherwise, V is 1. Attempts
to write to pixels outside the window do not cause interrupt requests to be
generated (the WVP bit is not affected). An attempt to write to a pixel inside
the window causes a window violation interrupt to be requested (the WVP
bit is set to 1) and the LINE instruction aborts. If the interrupt is enabled, the
PC saved during the interrupt points to the instruction that follows the LINE
instruction. If the interrupt is disabled, execution of the next instruction be-
gins.

The W=1 mode can be used to pick an object on the screen by means of the
following simple algorithm. An object previously drawn on the screen is
picked by moving the cursor to the object’s position and selecting it. To de-
termine which object is pointed to, the software first sets the window to a
small region surrounding the position of the cursor. The software next steps
a second time through the same display list used to draw the current screen
until one of the objects causes a window interrupt to occur. This should be
the object pointed to by the cursor. If no object causes an interrupt, the pick
window can be enlarged and the process repeated until the object is found.
If two objects cause interrupts, the size of the pick window can be reduced
until only one object causes an interrupt.

Graphics Operations - Window Checking

7.10.2 W=2 Mode - Window Miss Detection

The W=2 mode permits a PIXBLT or FILL instruction to be aborted if any pixel
in the destination array lies cutside the window. The destination array is
written only if the array lies entirely within the window, in which case the V
(overflow) bit is set to 0, and no interrupt request is generated (the WVP bit
is not affected). If any pixel in the destination array lies outside the window,
the V bit is set to 1, and a window violation interrupt is requested (the WVP
bit is set to 1).

For the DRAV and PIXT instructions, the destination pixel is drawn only if it
lies within the window. In this case, the V bit is set to 0, and no interrupt re-
quest is generated (the WVP bit is not affected). If the destination location
lies outside the window, the pixel write is inhibited, the V bit is set to 1, and
a window violation interrupt is requested (the WVP bit is set to 1).

At the end of a LINE instruction, the V bit is O if the last destination pixel
processed by the instruction lies within the window; otherwise, V is 1. At-
tempts to write to pixels inside the window do not cause interrupt requests to
be generated (the WVP bit is not affected). An attempt to write to a pixel
outside the window causes a window violation interrupt to be requested (the
WVP bit is set to 1) and the instruction aborts. If the interrupt is enabled, the
PC saved during the interrupt points to the instruction that follows the LINE
instruction. If the interrupt is disabled, execution of the next instruction be-
gins.

7.10.3 W=3 Mode - Window Clipping

In the W=3 mode, only writes to pixels within the window are permitted;
writes to pixels outside the window are inhibited. No interrupt request is
generated for any case.

For a PIXBLT or FILL instruction, only the portion of the destination array ly-
ing within the window is drawn. At the start of instruction execution, the
specified destination array is automatically preclipped to lie within the window
before the first pixel is transferred. Hence, no execution time is lost attempting
to write destination pixels which lie outside the window. In the case of a
PIXBLT, the source array is preclipped to fit the adjusted dimensions of the
destination array before the transfer begins.

During execution of a DRAV or PIXT instruction, a write to a pixel inside the
window is permitted, and the V bit is set to 0. An attempted write to a pixel
outside the window is inhibited, and the V bit is set to 1.

For the LINE instruction, writes to pixels outside the window are inhibited at
drawing time; no preclipping is performed. The value of the V bit at the end
of a LINE instruction is determined by whether the last pixel calculated by the
instruction fell inside (V=0) or outside (V=1) the window.

7-27

Graphics Operations - Window Checking

7.10.4 Specifying Window Limits

7-28

The limits of the current window are specified in the WSTART (window start)
and WEND (window end) registers. WSTART specifies the minimum XY co-
ordinates in the window, and WEND specifies the maximum XY coordinates.

As Figure 7-10 shows, WSTART specifies the XY coordinates (Xgtart, Ystart)
at the upper left corner of the window, and WEND specified the XY coordi-
nates (Xend-Yend) at the bottom right corner of the window. The origin is lo-
cated in its default position in the top left corner of the screen.

Display
Origin X Memory
> +)

X gtart+ Ystart)

R —" —r (Xend: Yend)
Window

A pixel with coordinates (X,Y)
lles within the window if both
X,tmsszend and YmSYSand

Figure 7-10. Specifying Window Limits

Figure 7-10 shows that a pixel that has coordinates (X,Y) lies within the
window if Xgiart € X < Xend @and Ygiart £ Y < Yeng. If a pixel does not meet
these conditions, it lies outside the window.

When Xgiart > Xend OF Ystart > Yend. the window is empty; that is, it contains
no pixels. Under these conditions, the window checking hardware detects all
destination pixel addresses as lying outside the window. Note that the con-
ditions Xgtart = Xend @nd Ygiart = Yend together specify a window containing
a single pixel.

Window start and end coordinates must lie in the range (0,0) to
(+32767,+32767). A window cannot contain pixels with negative X or Y
coordinates.

Graphics Operations - Window Checking

7.10.5 Window Violation Interrupt

A window violation (WV) interrupt is requested (the WVP bit in the INTPEND
register is set to 1) when:

[] W=1 and an attempt is made to write to a pixel inside the window or
(] W=2 and an attempt is made to write to a pixel outside the window

The interrupt occurs if it is enabled by the following conditions:

® The WVE bit in the INTENB register is 1
(The IE bit in the status register is 1

Alternatively, if the WV interrupt is disabled (IE=0 or WVE=0), the window
violation can be detected by testing the value of either the V bit in the status
register or the WVP bit following the operation.

When a WV interrupt occurs, the registers that change during the LINE,
PIXBLT and FILL instructions contain their intermediate values at the time the
violation was detected.

7.10.6 Line Clipping

The TMS34010 supports two methods for clipping straight lines to the
boundaries of a rectangular window: postclipping and preclipping. Postclip-
ping means that just before each pixel on the line is drawn, it is compared with
the window limits. If it lies outside the window, the write is inhibited. In
contrast, preclipping involves determining in advance of any drawing oper-
ations which pixels in the line lie within the window. The algorithm draws
only these pixels, and makes no attempt to write to pixels outside the window.
A preclipped line may take less time to draw since no calculations are per-
formed for pixels lying outside the window. In contrast, postclipping spends
the same amount of time calculating the position of a pixel outside the win-
dow as it does calculating a pixel inside the window.

When postclipping is used, special window comparison hardware compares
the coordinates of the pixel being drawn against all four sides of the window
at once. The W=3 window-checking mode is selected, and window checking
is performed in parallel with execution of the LINE instruction, so no overhead
is added to the time to draw a pixel. However, unless this form of clipping is
used carefully, another type of overhead may become significant. For example,
in a CAD (computer-aided design) environment where only a small portion
of a system diagram is to be displayed at once, potentially a great deal of time
could be spent performing calculations for points (or entire lines) lying off-
screen.

Preclipping is generally faster than postclipping, depending on how likely a
line is to lie outside the window. The first step in preclipping a series of lines
is to identify those that lie either entirely inside or outside the window. This
is accomplished by using an "outcode” technique similar to that of the Co-
hen-Sutherland algorithm. Those lines lying entirely outside are "trivially re-
jected” and consume no more processing time. Those lines lying entirely
within are drawn from one endpoint to the other with no clipping required.
This still leaves a third category of lines that may cross a window boundary,
and these require intersection calculations. However, this technique is pow-

7-29

Graphics Operations - Window Checking

7-30

erful for reducing the number of lines that require such calculations. While the
calculation of outcodes could be performed in software, this would represent
significant overhead for each line considered. The TMS34010 provides a more
efficient implementation via its CPW (compare point to window) instruction,
which compares a point to all four sides of the window at once.

The outcode technique classifies a line according to where its endpoints fall
in relation to the current clipping window. The area surrounding the window
is partitioned into eight regions, as indicated in Figure 7-11. Each region is
assigned a 4-bit code called an outcode. The outcode within the window is
00002. When an endpoint of a line falls within a particular region, it is as-
signed the outcode for that region. If the two endpoints of a line both have
outcodes 00005, the line lies entirely within the window. If the bitwise AND
of the outcodes of the two endpoints yields a value other than 00005, the line
lies entirely outside the window. Lines that fall into neither of these categories
may or may not be partially visible within the window.

+X
Y 0101 : 0100 | 0110
! i
]]
1]
H |
)]
------------------ Y=Y MN
0001 0000 0010
------------------ Y = Y MAX
)]
0 '
]]
]]
| ;
1001 1 1000 & 1010
Window

X=XMN X=XMAX

Figure 7-11. Outcodes for Line Endpoints

For those lines that require intersection calculations after the outcodes have
been determined, midpoint subdivision is an efficient means of preclipping.
The object again is to ensure that drawing calculations are performed only for
pixels lying within the window. An example of the midpoint subdivision
technique is illustrated in Figure 7-12. The line AB lies partially within the
window. The first step is to determine the coordinates of the line’s midpoint
at C. These are calculated as foilows:

XA+t Xg Yat+Yg
2 ’ 2

Xc. Ye) = (

Graphics Operations - Window Checking

B
0(5 'YB)
+X
GrlXe Y) Y=YMN
+y
D Xp.Yp)
A
Window
(XA 'YA) /
Tr-—-Y'= Y MAX
X = X MIN X = X MAX

XeYo) =(Xa3Xa, Ya+Ye)

X ¥o) =(KAzXe, Yasve)

Figure 7-12. Midpoint Subdivision Method

Comparing the outcodes of B and C, segment BC lies entirely outside the
window and can be trivially rejected. Segment AC still lies partially within the
window and will be subdivided again. The coordinates of point D, the mid-
point of AC, are calculated as before. Point D is determined to lie within the
window. The LINE instruction is now invoked two times, for segments OC
and DA, with D selected as the starting point in each case. For each segment
the W=2 window-checking mode is selected, but the window violation inter-
rupt is disabled. When each line crosses the window boundary, the win-
dow-checking hardware detects this and the LINE instruction aborts. In this
way the LINE instruction performs drawing calculations only for portions of
DA and DC lying within the window.

7-31

Graphics Operations

Section 8

Interrupts, Traps, and Reset

The TMS34010 supports eight interrupts, including reset. Memory addresses
FFFFFCOOh to FFFFFFFFh contain the 32 vector addresses used during in-
terrupts, software traps and reset. Each vector is a 32-bit address that points
to the beginning of the appropriate interrupt service routine.

This section includes the following topics:

Section
8.1 Interrupt Priorities and Vector Addressesccuveereeerreeeececeeineenienns
.2 Interrupt Interface Registers ettt re e naeaeane

.3 External INterrupts ...cocovccecieeieccesee e e

A Internal INerrUPLS .ooovceecveicieeeeeceece et

.5 Interrupt ProCessingcccceecvvverecrieeienveeeseesneeee e

BT 7 o OSSP

.7 lllegal Opcode Interruptscccooceeveeeceereenninene

RS T -7 OO O SO OSSR

©0 00 Q0 00 00 00 OO

8-1

Interrupts, Traps, and Reset - Interrupt Priories and Vector Addresses

8.1

8-2

Interrupt Priorities and Vector Addresses

Table 8-1 and Figure 8-1 summarize the TMS34010 interrupt vector addresses
and the interrupt priorities. RESET has the highest priority, and the illegal op-
code interrupt has the lowest. If two interrupts are requested at the same time,
the highest priority interrupt is serviced first (assuming it is enabled). RESET
and the nonmaskable interrupt cannot be disabled.

Table 8-1. interrupt Priorities

.. Internal/ L.
Int. Priority External Description and Source
Reset 1 | Device reset. Taken when the input signal at the
RESET pin is asserted low.
NMI 2 | Nonmaskable interrupt. Generated by a host
processor.
HI 3 | Host interrupt. Generated by a host processor.
]| 4 | Display interrupt. Generated by the TMS34010.
wv 5 I Window violation interrupt. Generated by the
TMS34010.
INT1 6 E Externall (ijnte,rrupts 1 and 2. Generated by
external devices.
INT2 7 E
ILLOP 8 | illegal opcode interrupt. Generated by the
TMS34010 when an illegal opcode is en-
countered.
Trap
Number Address
[OFFFFFFEOh Reset Reset
1 OFFFFFFCOh INTY External interrupt 1
2 OFFFFFFAOh NTZ Extornal Interrupt 2
3 OFFFFFF8Oh | 1
4 OFFFFFF60h | _
° 8 OFFFFFFa0h | Traps 3-7 1
[OFFFFFF20h -
7 OFFFFFFOOh]
8 OFFFFFEEOh MNI b
9 OFFFFFECOh H Host Interrupt
10 OFFFFFEAOh [Display Interrupt
1 OFFFFFESOh WV Window Violation
12 OFFFFFE6Oh |
13 OFFFFFE4Oh]
14 OFFFFFE20h | -
15 OFFFFFEOOh | —
6 OFFFFFDEON [
17 OFFFFFDCOR []
i OFFFFFDAOh [.
19 OFFFFFD80h]
20 ofFFFFDBOR [— TP 1220]
21 OFFFFFDAON [
22 OFFFFFD20h -]
23 OFFFFFDOON [-
24 OFFFFFCEOn []
25 OFFFFFCCOh []
26 OFFFFFCAOh [7
27 OFFFFFC8OR | .
28 OFFFFFCEON | s
29 OFFFFFCAOh |]
30 OFFFFFC20h ILLOP IHegal Opcode
31 OFFFFFCOOh Trap 31
‘-—-—az—-—l

Figure 8-1. Vector Address Map

Interrupts, Traps, and Reset - Registers/External Interrupts

8.2 Interrupt Interface Registers

Two registers, a subset of the 1/0 registers discussed in Section 6, monitor and
mask interrupt requests. These registers are summarized below; for more in-
formation, please refer to the register descriptions in Section 6.

The interrupt enable register, INTENB, contains the interrupt mask that se-
lectively enables various interrupts. An interrupt is enabled when the status
IE (global interrupt enable) bit and the appropriate bit in the INTENB register
are both setto 1.

® X7E (bit 1) enables external interrupt 1.

L X2E (bit 2) enables external interrupt 2.

L] HIE (bit 9) enables the host interrupt.

® DIE (bit 10) enables the display interrupt.

[] WVE (bit 11) enables the window violation interrupt.

The interrupt pending register, INTPEND, indicates which interrupts are cur-
rently pending. When an interrupt is requested, the appropriate bit in the
INTPEND register is set.

X1P (bit 1) indicates that external interrupt 1 is pending.

X2P (bit 2) indicates that external interrupt 2 is pending.

HIP (bit 9) indicates that the host interrupt is pending.

DIP (bit 10) indicates that the display interrupt is pending.

WVP (bit 11) indicates that the window violation interrupt is pending.

8.3 External Interrupts

External interrupt requests are received through input pins LINT1 and LINT2.
The two request pins are level-sensitive, active-low inputs. Each pin is dedi-
cated to an individual interrupt, allowing two independent interrupt requests
to be generated. (The pins are not encoded.) The state of the LINT1 and
LINT2 inputs is reflected in the X1P and X2P bits in the INTPEND register.
The register bit is 1 if the corresponding request is active.

The interrupts generated by requests at the LINT1 and LINT2 inputs are referred
to as INT1 and INT2. Interrupts INT1 and INT2 are selectively enabled by
means of the X1E and X2E bits in the INTENB register. [f external interrupt
requests become active at LINT1 and LINT2 at the same time, and both inter-
rupts are enabled, INT1 will be serviced first. If one or both of these interrupts
is disabled, the state of the LINT1 and LINT2 inputs continues to be reflected
in the X1P and X2P bits. These bits may be polled by software to detect
transitions at the interrupt inputs.

Table 8-2 shows the interrupt trap vectors for INT1 and INT2.

8-3

Interrupts, Traps. and Reset - External Interrupts

Table 8-2. External Interrupt Vectors

Input Vector
Name Pin Address
INT1 LINT1 FFFFFFCOh
INT2 CINT2 FFFFFFAOh

Once an interrupt request has been initiated by driving an interrupt request pin
low, the input should continue to be driven low until the interrupt service
routine can respond to the interrupting device. If the interrupt pin is permitted
to go inactive high before it has been recognized by the interrupt service rou-
tine, the request may be missed. If the active level is maintained after returning
from the interrupt service routine, however, the interrupt will be taken once
again.

The RETI instruction restores the ST (status) and PC (program counter) reg-
isters to their original state just prior to the interrupt. (This would not be the
case, however, if for some reason the values for these registers, saved on the
stack, were altered by the interrupt service routine). Assuming that the IE bit
in the restored ST is a 1, interrupts are again enabled by the time the RETI in-
struction finishes executing. If an interrupt request is active during the last
state of the RETI instruction, and the interrupt is enabled in the INTENB reg-
ister, the interrupt will be taken immediately following the RETI.

The interrupt service routine typically writes to the interrupting device to clear
the interrupt request before executing an RETI (return from interrupt) in-
struction. An example of the last three instructions in a typical interrupt service
routine is shown below, where DEVICE is the symbolic address of the inter-
rupting device:

CLR AQ
MOVE A0 ,@DEVICE
RETI

The interrupt request is cleared by the MOVE instruction above, which writes
a 0 to the device address. The maximum asynchronous delay from the end of
the write cycle (measured from the iow-to-high transition of W) to the resuit-
ing low-to-high transition at the GSP’s interrupt request input should be no
more than six local clock periods.

Signals input to the local interrupt pins are assumed to be asynchronous to the
GSP local clocks, and are synchronized internally by the GSP before they are
processed. The GSP samples the state of the LINT1 and LINT2 inputs at each
high-to-low transition of LCLK1, and updates the X1P and X2P bits in the
INTPEND register accordingly (an active-low input is seen as a one in the
appropriate register bit). The delay from the transition at the input to the
corresponding change in the X1P or X2P bit is from one to two states, de-
pending on the transition’s phase relationship to-LCLK1.

Interrupts, Traps, and Reset - Internal Interrupts

8.4 Internal Interrupts

Several internal conditions are associated with specific interrupts. Table 8-3
summarizes these interrupts. If two internal interrupts are requested simul-
taneously, or if two or more internal interrupt requests are pending, the highest
priority interrupt is serviced first; NM| has the highest priority, followed by HI,
DI, and WV. When internal and external interrupts are pending, the internal
interrupts are serviced first (with the exception of the ILLOP interrupt).

Table 8-3. Interrupts Associated with Internal Events

Vect
Name Function Level Locat?(;n Description
NM! | Nonmaskable 8 FFFFFEEOh | The host processor sets the NMI bit in the
interrupt HSTCTL register to a 1.
Hi Host interrupt 9 FFFFFECOh | The host processor sets the INTIN bit in the
HSTCTL register to a 1. o
[s]] Display interrupt 10 FFFFFEAOh | A particular horizontal line on the video display
is being refreshed. The line number is specified
in the DPYINT register.
wv Window violation 11 FFFFFE80h An attempt has been made to move a pixel to a
interrupt destination location that lies inside or outside a
specified window, depending on the selected
windowing mode.
ILLOP| lllegal operand 30 FFFFFC20h | See Section 8.7.
interrupt

The nonmaskable interrupt, or NMI, occurs when a host processor requests
an interrupt by writing a 1 to the NMI bit in the HSTCTL register. This inter-
rupt cannot be disabled, and always occurs as soon as possible following the
request. The NMI is delayed only for completion of an instruction already in
progress, or until the next interruptible point of an interruptible instruction
such as a PIXBLT is reached.

The NMI mode bit in the HSTCTL register determines whether or not context
information is saved on the stack when a nonmaskable interrupt occurs:

® If NMIM = 0, the PC and ST are pushed on the stack before the interrupt
is serviced.

° If NMIM = 1, nothing is saved on the stack before the interrupt is ser-
viced.

The TMS34010 automatically clears the NMI bit at the time it takes the inter-
rupt. After setting the NMI bit, the host processor can determine when the
TMS34010 has taken the interrupt by polling the NMI bit until it changes from
altoa0.

The display interrupt (DI) is used to coordinate processing activity with the
refreshing of particular areas of the display. The display interrupt request be-
comes active when a particular display line, specified in the DPYINT register,
is output to the monitor screen. At the start of each horizontal bianking period,
the VCOUNT register is compared to the DPYINT register. When the vertical
count value in VCOUNT = DPYINT, a display interrupt request is generated.
If enabled, the interrupt is taken.

8-5

Interrupts, Traps, and Reset - Interrupt Processing

8.5 Interrupt Processing

8-6

An interrupt is said to be pending if it has been requested but has not yet been
processed. If a pending interrupt is enabled, and no interrupt of higher priority
is pending at the same time, the interrupt is accepted by the TMS34010 at the
end of the current instruction (or at the next interruptible point in the middle
of a PIXBLT or FILL instruction). When the TMS34010 takes an interrupt, it
performs the following actions:

1) The TMS34010 pushes the PC on the stack.

2) The TMS34010 pushes the ST on the stack. PIXBLT and FILL in-
structions that are interrupted by external, host, and nonmaskable (if
NMIM=0) interrupts set the PBX bit in the ST before pushing the ST.

3) The TMS34010 modifies the contents of the ST as follows:

4) The TMS34010 fetches the interrupt vector from external memory into
the PC.

5) The TMS34010 begins executing the instruction pointed to by the new
PC value.

In step 5, the TMS34010 resumes instruction execution at the entry point of
the interrupt service routine. At the time the first instruction of the service
routine begins execution, the new status register contents imply the following
conditions:

° All interrupts are disabled (except NM! and reset)
° Field O is 16 bits long and is zero extended
L] Field 1 is 32 bits long and is zero extended

The service routine can allow itself to be interrupted by loading a new inter-
rupt-enable mask into the INTENB register and setting status bit IEto 1. The
INTENB mask value is selected to determine which interrupts can interrupt the
currently executing service routine. The service routine can also load new field
sizes if values other than the defaults are required.

The last instruction in any interrupt service routine must be RETI (return from
interrupt). Unlike the RETS (return from subroutine) instruction, which only
pops the PC from the stack, RETI pops both the ST and PC. This restores the
original state of the interrupted program so that execution can proceed from
the point at which the interrupt occurred.

Interrupts, Traps, and Reset - Interrupt Processing

8.5.1

Interrupt Latency

An external interrupt, host interrupt request, or NMI request is delayed by an
amount of time that depends on the instruction in progress and on the local
memory bus traffic at the time of the request.

The delay from an interrupt request to the time that the first instruction of the
interrupt service routine begins execution is the sum of six potential sources
of delay:

1) Interrupt request recognition
2) Screen-refresh cycle

3) DRAM-refresh cycle

4) Host-indirect cycle

5) Instruction interrupt

6) Interrupt context switch

In the best case, items 2 through 5 cause no delay. The minimum delay due
to items 1 and 6 is 17 machine states.

® The interrupt request recognition delay is the time required for a
request to be internally synchronized to the local clock. In the case of
an external interrupt request, the delay is measured from the high-to-low
transition of the TNT1 or INT2 pin. In the case of a host interrupt or NMI
request, the delay is measured from completion of the host's write to the
INTIN or NMI pin.

® The screen-refresh and DRAM-refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay an interrupt.

L] The likelihood of a delay caused by a host-indirect cycle is small in
most instances, but this depends on the application. The delay due to a
single host-indirect cycle is two machine states, assuming no wait states,
but multiple host-indirect cycies occurring within a brief period of time
could cause additional delays. Theoretically, a fast host processor could
generate so many local memory cycles that the TMS34010 would be
prevented from servicing interrupts for an indefinite period.

® The instruction interrupt time refers to the time required for an in-
struction that was already executing at the time the interrupt request was
received to either complete or to reach the next interruptible point in an
instruction (such as a PIXBLT, FILL, or LINE).

{ The interrupt context switch operation pushes the PC and ST onto
the stack, and fetches the PC for the interrupt service routine from the
appropriate vector in memory.

Table 8-4 shows the minimum and maximum times for each of the six oper-
ations listed. The interrupt latency is calculated as the sum of the numbers in
the six rows. In the best case, the interrupt latency is only 17 machine states.
The worst-case latency can be as high as 22 machine states plus the delays
due to host-indirect cycles and instruetion completion. Table 8-5 shows in-
struction interrupt times for some of the longer, noninterruptible instructions.
Table 8-5 also shows the instruction completion time for a JRUC instruction

8-7

Interrupts, Traps, and Reset - Interrupt Processing

that jumps to itself - the TMS34010 may be executing this instruction if the
software is simply waiting for an interrupt.

Table 8-4. Six Sources of Interrupt Delay

Late In States
Operation - ncy (In States)
Min Max
Interrupt recognition 1 2
Instruction interrupt 0 See Table 8-5
DRAM-refresh cycle 0 2
See Note 2
Screen-refresh cycle 0 2
See Note 2
Host-indirect cycle 0 See Note 1
Interrupt context switch 16 16

Notes: 1) The latency due to host-indirect cycles depends on both the
hardware system and the application. Theoretically, a host pro-
cessor could generate so many local memory cycles that the
TMS34010 coulid effectively be prevented from servicing inter-
rupts. The delay due to a single host-indirect cycle is two machine
states, assuming no wait states.

2) DRAM-refresh and screen-refresh cycle times assume no wait
states.

3) Context switch time assumes that the SP is aligned to a word
boundary; that is, the four LSBs of the SP are 0Os. If the SP is not
aligned, the delay is 28 states.

Table 8-5. Sample Instruction Completion Times

Worst-Case Instruction
Instruction Interrupt Time (In States)
SP Aligned SP Not Aligned
DIVS A0,A2 . 43 43
MMFM SP,ALL 72 144
MMTM SP,ALL 73 169
Wait: JRUC wait 1 1

Notes: 1) The worst-case instruction interrupt time is equal to the instruction
execution time less one machine state (except for PIXBLTs, FILLs,
and LINE).

2) The SP-aligned case assumes that the SP is aligned to a word
boundary in memory.

Interrupts, Traps, and Reset - Traps/lllegal Opcodes

8.6 Traps

The TMS34010 supports 32 software traps, numbered 0 through 31. Soft-
ware traps behave similarly to interrupts, except that they are initiated when
the TMS34010 executes a TRAP instruction. Unlike an interrupt, a software
trap cannot be disabled.

When the TMS34010 executes a TRAP instruction, it performs the same se-
quence of actions that it performs for interrupts. The TRAP 1 through TRAP
31 instructions cause the status register and the PC to be pushed onto the
stack. TRAP O is similar to a hardware reset because it does not push the
status register or PC onto the stack; it differs from a hardware reset because it
does not cause the TMS34010's internal registers to be set to a known initial
state. TRAP 8 is similar to an NM! interrupt, except that the NMIM (NMI
mode) bit in the HSTCTLL register has no effect on instruction execution; the
status register and PC are stacked unconditionally when TRAP 8 is executed.

A 32-bit vector address is associated with each software trap. To determine
the vector address for a trap number A, where N = 0 through 31, subtract
32N from FFFFFFEOh. Figure 8-1 on page 8-2 shows the vector addresses
for the software traps.

8.7 lllegal Opcode Interrupts

The TMS34010 recognizes several reserved opcodes as illegal. When one of
these opcodes is encountered in the instruction stream, the TMS34010 traps
to vector number 30, located at memory address FFFFFC20h. An illegal op-
code is similar in effect to a TRAP 30 instruction. The iliegal opcode interrupt
cannot be disabled. Table 8-6 lists ranges of illegal opcodes.

Table 8-6. lllegal Opcodes Ranges

0200h through 02FFh
0400h through 04FFh
0800h through 08FFh
GAO0Oh through OAFFh
0CO00h through OCFFh
OEOOh through OEFFh
3400h through 37FFh
7000h through 7FFFh
9E0Oh through 9FFFh
BEOOh through BFFFh
D800h through DEFFh
FEOOh through FFFFh

8-9

Interrupts, Traps, and Reset - Reset

8.8 Reset

Reset puts the TMS34010 into a known initial state that is entered when the
input signal at the RESET pin is asserted low. RESET must remain active low
for a minimum of 40 local clock (LCLK1 or LCLK2) periods to ensure that the
TMS34010 has sufficient time to establish its initial internal state. While the
reset signal remains asserted, all outputs are in a known state, no DRAM-
refresh cycles take place, and no screen-refresh cycles are performed.

At the low-to-high transition of the RESET signal, the state of the HCS input
determines whether the TMS34010 is haited (host-present mode) or whether
it begins executing instructions (self-bootstrap mode):

® Host-Present Mode

If HCS is high at the end of reset, TMS34010 instruction execution is
halted and remains halted until the host clears the HLT (halt) bit in
HSTCTL (host control register). Following reset, the eight RAS-only
refresh cycles required to initialize the dynamic RAMs are performed
automatically by the TMS34010 memory control logic. As soon as the
eight RAS-only cycles are completed, the host is allowed access to
TMS34010 memory. At this time, the TMS34010 begins to automat-
ically perform DRAM refresh cycles at regular intervals. The TMS34010
remains haited until the host clears the HLT bit. Only then does the
TMS34010 fetch the level-0 vector address from location FFFFFFEOh
and begin executing its reset service routine.

® Self-Bootstrap Mode

If HCS is low at the end of reset, the TMS34010 first performs the eight
RAS-only refresh cycles required to initialize the DRAMs. Immediately
following the eight RAS-only cycles, the TMS34010 fetches the level-0
vector address from location FFFFFFEQh, and begins executing its reset
service routine.

Unlike other interrupts and software traps, reset does not save previous ST or
PC values. This is because the value of the stack pointer just before a reset is
generally not valid, and saving its value on the stack is unnecessary. A TRAP
0 instruction, which uses the same vector address as reset, similarly does not
save the ST or PC values.

8.8.1 Asserting Reset

8-10

A reset is initiated by asserting the RESET input pin at its active-low level. To
reset the TMS34010 at power up, RESET must remain active low for a mini-
mum of 40 local clock periods after power levels have become stable. At times
other than power up, the TMS34010 is also reset by holding RESET low for a
minimum of 40 clock periods. The 40-clock interval is required to bring
TMS34010 internal circuitry to a known initial state. While RESET remains
asserted, the output and bidirectional signals are driven to a known state.

The TMS34010 drives its RAS signal inactive high as long as RESET remains
low. The specifications for certain DRAM and VRAM devices, including the
TMS4161, TMS4164 and TMS4464 devices, require that the RAS signal be
driven inactive-high for 100 microseconds during system reset. Holding the
RESET signal low for 150 microseconds causes the RAS signal to remain high

interrupts, Traps, and Reset - Reset

for the 100 microseconds required to bring the memory devices to their initial
states. DRAMSs such as the TMS4256 specify an initial RAS high time of 200
microseconds, requiring that RESET be held low for 250 microseconds. In
general, holding RESET low for t microseconds ensures that RAS remains high
initially for t - 50 microseconds.

8.8.2 Suspension of DRAM-Refresh Cycles During Reset

An active-low level at the RESET pin is considered to be a power-up condition,
and DRAM refresh is not performed until RESET goes inactive high. Conse-
quently, the previous contents of the local memory may not be valid after a
reset.

8.8.3 State of VCLK During Reset

In many systems, the VCLK pin continues to be clocked during reset. How-
ever, a system in which VCLK is not clocked during reset should maintain
VCLK at the logic high level while it is not being clocked. This is necessary
to ensure that the video counters are reset properly. In fact, VCLK should be
held at the logic high level when it is not being clocked regardless of whether
the device is being reset. While VCLK is low, storage nodes in the VCOUNT
and HCOUNT registers rely on their internal capacitance to maintain their
state. If VCLK remains low for a sufficiently long period, these registers are
subject to bit errors due to charge leakage.

8.8.4 Initial State Following Reset

While the RESET pin is asserted low, the TMS34010’s output and bidirectional
pins are forced to the states listed in Table 8-7.

Table 8-7. State of Pins During a Reset

Outputs Driven Outputs Driven Bidirectional
To High level To Low Level Pins Driven to
High Impedance
DDOUT BLANK HSYNC
HM T VSYNC
DEN HDO-HD15
LAL_ LADO-LAD15
TR/QE
RAS
CAS
W
_HINT
HLDA/EMUA
Tt HRDY will stay high during reset if the HCS input is also high.

Immediately following reset, all 1/0 registers are cleared (set to 0000h), with
the possible exception of the HLT bit in the HSTCTL register. The HLT bit is
set to 1 if HCS is high just before the low-to-high transition of RESET.

interrupts, Traps, and Reset - Reset

Just before execution of the first instruction in the reset routine, the
TMS34010’s internal registers are in the following state:

(] General-purpose register files A and B are uninitialized.
° The ST is set to 00000010h.

(] The PC contains the 32-bit vector fetched from memory address
FFFFFFEOh.

The instruction cache is in the following state at this time:

® The SSA (segment start address) registers are uninitialized.

e The LRU (least recently used) stack is set to the initial sequence 0,1,2,3,
where 0 occupies the most-recently-used position, and 3 occupies the
least-recently-used position.

° All P (present) flags are cleared to Os.

8.8.5 Activity Following Reset

8-12

Immediately following the low-to-high transition of RESET, the TMS34010
performs a series of eight RAS-only memory cycles to bring the DRAMs and
VRAMs to their initial operating states. These cycles are completed before any
accesses of the TMS34010's memory (by either the TMS34010 or host pro-
cessor) are allowed to occur. if the host processor attempts to access the
TMS34010 memory indirectly before the eight RAS-only cycles have com-
pleted, it receives a not-ready signal from the TMS34010 until the cycles have
completed. The eight RAS-only cycles occur regardless of the initial value to
which the HLT bit in the HSTCTL register is set.

Each of the eight RAS-only cycles is a standard DRAM-refresh cycle. The RF
bus status signal output with the row address is active low. The row address
is all Os.

Following the eight RAS-only cycles, the TMS34010 automatically begins to
initiate a new DRAM-refresh cycle every 32 TMS34010 local clock cycles.
The first DRAM refresh cycle begins approximately 32 local clock periods after
the end of reset. A DRAM-refresh cycle is initiated every 32 TMS34010 clock
cycles until the DRAM-refresh rate is changed by the TMS34010 or host
processor.

The TMS34010 is configured by means of an external signal input on the HCS
pin to either:

[Begin executing instructions immediately after reset is completed (self-
bootstrap mode), or

® Halt until the host processor instructs it to begin executing (host-present
mode).

Interrupts, Traps, and Reset - Reset

8.8.5.1 Self-Bootstrap Mode

In self-bootstrap mode, the TMS34010 begins executing instructions imme-
diately following reset. This mode is typically used in a system in which the
reset vector and reset service routine are contained in nonvolatile memory,
such as a bootstrap ROM. This type of system does not necessarily require a
host processor, and the TMS34010 may be responsible for performing host
processor functions for the system.

The TMS34010 is configured in self-bootstrap mode when the HCS pin is low
just before the low-to-high transition of RESET. The low HCS level forces the
HLT bit to 0. Immediately following the end of reset and the eight RAS-only
cycles, the TMS34010 fetches the level-0 vector address and begins executing
the reset interrupt routine.

At the low-to-high transition of RESET, the HCS input is internally delayed
before being checked to determine how to set the HLT bit. In a system with-
out a host processor, for instance, this permits the HCS and RESET pins to be
tied together, eliminating the need for additional external logic.

Transitions of the ACS and RESET signals are assumed to be asynchronous
with respect to the TMS34010 local clock. HCS and RESET are internally syn-
chronized to the local clock by being held in latches for at least one clock pe-
riod before being used by the TMS34010. The delay through the synchronizer
latch is from one to two local clock periods, depending on the phase of the
signal transitions relative to the clock. To permit the HCS and RESET pins to
be wired together, TMS34010 on-chip logic delays the HCS low-to-high
transition to ensure that it is detected after the RESET low-to-high transition.
The level of the delayed HCS signal at the time the low-to-high RESET transi-
tion is detected determines the setting of the HLT bit.

8.8.5.2 Host-Present Mode

Host-present mode assumes that a host processor is connected to the
TMS34010’s host interface pins. In this mode, the TMS34010 local memory
can be composed entirely of RAM (no ROM). Following reset, the host pro-
cessor must download the initial program code, interrupt vectors, and so on,
before allowing the TMS34010 to begin executing instructions.

The TMS34010 is configured in host-present mode as follows. On the trailing
edge of RESET, the HCS (host interface chip select) input is sampled. If the
HCS pin is inactive high, internal logic forces the HLT (halt) bitto a 1. In this
fashion, the TMS34010 is automatically halted following reset, and does not
begin execution of its reset service routine until the host processor loads a 0
to HLT. In the meantime, the host processor is able to load the memory and
/0O registers with the appropriate initial values before the TMS34010 begins
executing instructions. This may include writing the reset vector and reset
service routine into the TMS34010’s memory, for example.

No additional external logic is required to force HCS high before the low-to-
high transition of RESET. The simple external decode logic typically used
drives the HCS input active low only when one of the TMS34010’s host in-
terface registers is addressed by the host processor. Assuming that the host
processor is not actively chip-selecting the TMS34010 at the end of reset, HCS
is high.

Interrupts, Traps, and Reset

Section 9

Screen Refresh and Video Timing

The TMS34010 generates the synchronization and blanking signals used to
drive a video screen in a graphics system. The GSP can be programmed to
support a variety of screen resolutions and interlaced or noninterlaced video.
If desired, the GSP can be programmed to synchronize to externally generated
video signals. The GSP also supports the use of video RAMs by generating
the memory-to-register cycles necessary to refresh a screen.

This section includes the following topics:

Section

9.1 SCrEEN SHZES ...ooviieeiiiiiereceeer ettt s ar b bt eennennsare s

9.2 Video Timing Signals

9.3 Video Timing Registers

9.4 Relationship Between Horizontal and Vertical Timing Signals 9-5
9.5 Horizontal Video Timingccccriiiininienin st eeaneee s 9-6
9.6 Vertical Video TiMiNgcocooeeremiieicireesiecene e 9-8
9.7 Display INterruptccccoveemcrineneerererer e e 9-13
9.8 DOt RAe .cueceeeiiii ettt et . 9-14
9.9 External SYNC Modeccccvmiieriiiieieeceecete e st 9-156
9.10Video RAM CONLIOl ..c..coiieiiirieeeriteire e seere e e ensias 9-18

9-1

Screen Refresh and Video Timing - Screen Sizes

9.1 Screen Sizes

9-2

The TMS34010's 26-bit word address provides direct addressing of up to 128
megabytes of external memory. This address reach supports very high-
resolution displays. For example, the designer of a large TMS34010-based
system could decide to use the lower half of the address space for display
memory, and use the upper half for storing programs and data. Half of this
memory space, for example, could be used as a display memory, and the re-
maining memory can be used for programs and data. The 64-megabyte dis-
play memory in this example could support the following display sizes:

L] 8192 by 4096 pixels at 16 bits per pixel
° 8192 by 8192 pixels at 8 bits per pixel

® 16,384 by 8192 pixels at 4 bits per pixel
® 16,384 by 16,384 pixels at 2 bits per pixel

® 32,768 by 16,384 pixels at 1 bit per pixel

The video timing registers also support high-resolution displays. The 16-bit
vertical counter register, VCOUNT, directly supports screen lengths of up to
65,5636 lines. The 16-bit horizontal counter register, HCOUNT, does not di-
rectly limit the horizontal resolution. Each horizontal line can be programmed
to be up to 65,5636 VCLK (video clock) periods long. The VCLK period,
however, is an arbitrary number of dot-clock periods in length, depending on
the external divide-down logic used to produce the VCLK signal from the dot
clock. Thus, the number of pixels per line supported by the GSP horizontal
timing registers is limited only by the amount of video memory that is present.

Note that frame buffers in excess of 224 bits may require an external counter
to determine which VRAM serial outputs should be enabled during a scan line.
This external counter would increment upon detecting a 1-to-0 transition of
the logical address bit 23 during successive screen-refresh cycles. To support
applications requiring panning and scrolling of the frame buffer, the initial va-
lue of this counter immediately following vertical retrace should be capabie of
being loaded under program control.

Screen Refresh and Video Timing - Video Timing Signals

9.2 Video Timing Signals

The TMS34010 generates horizontal sync, vertical sync, and blanking signals
(HSYNC, VSYNC, and BLANK) on chip. The GSP’s video timing logic is driven
by the video input clock (VCLK). The sync and blanking signals control the
horizontal and vertical sweep rates of the screen and synchronize the screen
display to data output by the VRAMs.

HSYNC is the horizontal sync signal used to control external video circuitry.
It may be configured as an input or an output via the DXV and HSD
bits in the DPYCTL register. When DXV=0 and HDS=0, external
video is selected and HSYNC is an input. Otherwise, HSYNC is an
output.

VSYNC s the vertical sync signal used to control external video circuitry. It
may be configured as an input or an output via the DXV bit in the
DPYCTL register. If DXV=1, internal video is selected and VSYNC is
an output. If DXV =0, external video is selected and VSYNC is an in-
put.

BLANK is used to turn off a CRT's electron beam during horizontal and
vertical retrace intervals. The signal output at the BLANK pin is a
composite of the internally generated horizontal and vertical blank-
ing signals. BLANK can also be used to control starting and stopping
of the VRAM shift registers.

VCLK s derived from the dot clock of the external video system. VCLK
drives the internal video timing logic.

Holding VCLK low for long periods may cause video counter errors. When
VCLK is not being clocked for long periods, it should be held at the logic high
level. While VCLK is low, the storage nodes within the device rely on their
internal capacitance to maintain state information, and if VCLK is held low for
a sufficiently long time, charge leakage may cause bit errors.

Screen Refresh and Video Timing - Video Timing Registers

9.3 Video Timing Registers

9-4

The video timing registers are a subset of the 1/0 registers described in Section
6. The values in the video timing registers control the video timing signals.
These registers are divided into two groups:

Horizontal timing registers control the timing of the HSYNC signal
and the internal horizontal blanking signal.

HCOUNT counts the number of VCLK periods per horizontal scan
line.

HESYNC specifies the point in a horizontal scan line at which the
HSYNC signal ends.

HEBLNK specifies the endpoint of the horizontal blanking interval.

HSBLNK specifies the starting point of the horizontal blanking
interval.

HTOTAL defines the number of VCLK periods allowed per hori-
zontal scan line.

Vertical timing registers control the timing of the VSYNC signal and
the internal vertical blanking signal.

VCOUNT counts the horizontal scan lines in the screen display.
VESYNC specifies the endpoint of the VSYNC signal.
VEBLNK specifies the endpoint of the vertical blanking interval.

VSBLNK specifies the starting point of the vertical blanking in-
terval.

VTOTAL specifies the value of VCOUNT at which VSYNC may
begin.

Screen Refresh and Video Timing - Horizontal vs. Vertical Signals

9.4 Relationship Between Horizontal and Vertical Timing Signals

Figure 9-1 illustrates the relationship between the horizontal and vertical tim-
ing signals in the construction of a two-dimensional raster display pattern.
The vertical sync and blanking signals span an entire frame. The horizontal
sync and blanking signals span a single horizontal scan line within the frame.

j————Horizontal internal ———)|
- L msvne
— - L — BNk
—P»VCOUNT=0 ; .| .
VESYNC
VEBLNK
Start
Vertical
New
Frame Interval
VEBLNK —¥
L—— VTOTAL

c —

VBLNK

HSBLNK
HTOTAL

VEYN

HCOUNT=0
HESYNC
HEBLNK

i

Start New Llne———J

Figure 9-1. Horizontal and Vertical Timing Relationship

Figure 9-1 illustrates the following terms and phrases, which are used
throughout this section:

HBLNK and VBLNK are /internal horizontal and vertical blanking signals
that combine to form the BLANK signal output. (HBLNK and VBLNK
cannot be accessed at TMS34010 pins.) The display is active (not
blanked) only when HBLNK and VBLNK are both inactive high.

Horizontal front porch refers to the interval between the beginning
of horizontal blanking and the beginning of the horizontal sync signal.

Horizontal back porch is the interval between the end of the hori-
zontal sync signal and the end of horizontal blanking.

Vertical front porch refers to the interval between the beginning of
vertical blanking and the beginning of the vertical sync signal.

Vertical back porch is the interval between the end of the vertical sync
signal and the end of vertical blanking.

Screen Refresh and Video Timing - Horizontal Video Timing

9.5 Horizontal Video Timing

9-6

The following discussion applies to internally generated video timing (the DXV
and HSD bits in the DPYCTL register are set to 1 and O, respectively). Hori-
zontal timing signals are the same for interlaced and noninterlaced video.

The HESYNC, HEBLNK, HSBLNK, and HTOTAL registers control horizontal
signal timing as shown in Figure 9-2. All horizontal timing parameters are
specified as multiples of VCLK. The time between the start of two successive
HSYNC pulses is specified by HTOTAL. HCOUNT counts from O to the value
in HTOTAL and then repeats. The value in HTOTAL represents the number
of VCLK periods, minus one, per horizontal scan line. The value in HESYNC
represents the duration of the sync pulse, minus one. The values in HEBLNK
and HSBLNK specify the beginning and end points of the horizontal blanking
interval.

e U o

T

l——————HeBLNKe1 —_

e HTOTALHl————)

Figure 9-2. Horizontal Timing

Figure 9-3 shows the internal logic used to generate the horizontal timing
signals. HCOUNT is incremented once each VCLK period (on the high-to-low
transition) until it equals the value in HTOTAL. On the next VCLK period
following HCOUNT=HTOTAL, HCOUNT is reset to 0, and begins counting
again.

The limits of the horizontal sync pulse are defined by the values in HESYNC
and HTOTAL. HSYNC is driven active low when HCOUNT=HTOTAL; it is
driven inactive high when HCOUNT=HESYNC. After HCOUNT becomes
equal to HTOTAL or HESYNC, there is a one-clock delay before the
active/inactive transition takes place at the HSYNC pin.

The internal HBLNK signal is driven active low after HCOUNT=HSBLNK; it is
driven inactive high after HCOUNT=HEBLNK. HBLNK is logically ORed (ne-
gative logic) with VBLNK to produce the BLANK signal; that is, BLANK goes low
when either HBLNK or VBLNK is low. After HCOUNT becomes equal to
HSBLNK or HEBLNK, there is a one-clock delay before the transition takes
place at the BLANK pin.

Screen Refresh and Video Timing - Horizontal Video Timing

VCLK

Figure 9-3. Horizontal Timing Logic - Equivalent Circuit

Figure 9-4 illustrates horizontal signal generation. In this example,
HTOTAL=N, HSBLNK=N-2, HESYNC=2, and HEBLNK=4. Signal transitions
at the HSYNC and BLANK pins occur at high-to-low VCLK transitions. After
HCOUNT becomes equal to HTOTAL, HSBLNK, HESYNC, or HEBLNK, there
is a one-clock delay before the transition takes place at the HSYNC or BLANK
pin. When HCOUNT=HSBLNK (shortly before the end of the horizontal
scan), horizontal blanking begins. At this time, the DIP (display interrupt) bit
in the INTPEND register is set to 1 if VCOUNT=DPYINT. The next screen-
refresh cycle may also occur at this time — the GSP can be programmed to re-
fresh the screen after one, two, three, or four scan lines.

VCLK

HCOUNT X N-EXN-4 X N-8XN-2XN-DXN X0 X1 X2 X8 X4 X5 X 6)
ASYNC N |
BLANK l\ /

Vv A4 A\
Horlzontal Horlzontal Horizontal
Front Porch Sync Puise Back Porch

HEBLNK = N-2 HTOTAL = N
HESYNC = 2 HEBLNK = 4

Figure 9-4. Example of Horizontal Signal Generation

9-7

Screen Refresh and Video Timing - Vertical Video Timing

9.6 Vertical Video Timing

9-8

The following discussion applies to internally generated video timing (the DXV
bit in the DPYCTL register is set to 1).

The VESYNC, VEBLNK, VSBLNK, and VTOTAL registers control vertical signal
timing as shown in Figure 9-5. All vertical timing parameters are specified as
multiples of the horizontal sweep time H, where

H = (HTOTAL + 1) x (VCLK period)

VTOTAL specifies the time interval between the start of two successive vertical
sync pulses; this value is the number of H intervals, less one, in each vertical
frame. VESYNC represents the duration of the VSYNC pulse, less one, in each
vertical frame. VSYNC's high-to-low and low-to-high transitions coincide with
high-to-low transitions at the HSYNC pin.

VSBLNK and VEBLNK specify the starting and ending points of vertical
blanking. Blanking begins when VCOUNT=VSBLNK and ends when
VCOUNT=VEBLNK. Assuming that horizontal blanking is active at the start
of each HSYNC puise, transitions of the internal vertical blanking signal,
VBLNK, occur while horizontal blanking is active.

= T\ [T e

I vert | I vel
| Front | Yert | ga
|

33
27

| Porch | SYM© | por

s

A
o

) W

VESYNC+1
[—

le— VEBLNIH —

l—————veBLNKs 1 ————)

e—— VIOTALHI——

Figure 9-5. Vertical Timing for Noninterlaced Display

:

Figure 9-6 shows the internal logic that generates the vertical timing signals.
VCOUNT increments at the beginning of each HSYNC pulse until it equals the
value in VTOTAL. When VCOUNT=VTOTAL, VCOUNT is reset to O and be-
gins counting again. VSYNC is driven active low after VCOUNT=VTOTAL; it
is driven inactive high after VCOUNT=VESYNC. The internal VBLNK signal is
driven active low after VCOUNT=VSBLNK; it is driven inactive high after
VCOUNT=VEBLNK. VBLNK is logically ORed (negative logic) with HBLNK to
produce the BLANK signal. This description applies to a noninterlaced display.
The vertical timing changes slightly for an interlaced display.

Screen Refresh and Video Timing - Vertical Video Timing

HEYNC

Figure 9-6. Vertical Timing Logic - Equivalent Circuit

9.6.1 Noninterlaced Video Timing

Noninterlaced scan mode is selected by setting the NIL bit in the DPYCTL
register to 1. In this mode, each video frame consists of a single vertical field.
Figure 9-7 shows the path traced by the electron beam on the screen. Box A
shows the vertical retrace, which is an integral number of horizontal scan lines
in duration. Box B shows the active portion of the frame. Solid lines represent
lines that are displayed; dashed lines are blanked.

Monitor Screen Monltor Screen

Figure 9-7. Electron Beam Pattern for Noninterlaced Video

Figure 9-8 illustrates the video timing signals that generate the display. In this
example, VSBLNK=8, VTOTAL=9, VESYNC=1, and VEBLNK=2. (in actual

9-9

Screen Refresh and Video Timing - Vertical Video Timing

applications, much larger values are used; these values were chosen for illus-
tration only.) Each horizontal scan line is preceded by a horizontal retrace.
The horizontal scan pattern repeats until VCOUNT=VTOTAL; VCOUNT is then
reset to 0, and vertical retrace returns the beam to the top of the screen. BLANK
is active low during both horizontal and vertical retrace intervals.

VCOUNT is incremented each time HCOUNT is reset to O at the end of a scan
line. The VSYNC output begins when VCOUNT=VTOTAL, coinciding with the
start of HSYNC. The VSYNC output ends when VCOUNT=VESYNC; this also
coincides with the start of an HSYNC pulse.

The starting screen-refresh address is loaded from DPYSTRT into DPYADR

at the end of the last active horizontal scan line preceding vertical retrace. This
load is triggered when HCOUNT=HSBLNK and VCOUNT=VSBLNK.

66660666666

|
|
|
|
|
]
|
|
Vertical /—N —N——
Sweep :
Horizontal___A_A_AAAAAAAAAA
Sweep |

VSBLNK =+8 VTOTAL
VESYNC = 1 VEBLNK

Figure 9-8. Noninterlaced Video Timing Waveform Example

9-10

Screen Refresh and Video Timing - Vertical Video Timing

9.6.1.1 Interlaced Video Timing

Interlaced scan mode is selected when the NIL bit in the DPYCTL register is
set to 0. In this mode, each display frame is composed of two fields of hori-
zontal scan lines. The display consists of alternate lines from the two fields.
This doubles the display resolution while only slightly increasing the frequency
with which data is supplied to the screen.

Figure 9-9 illustrates the path traced by the electron beam on the screen.
Figure 9-10 shows the timing waveforms used to generate the display in Fig-
ure 9-9. In this example, VSBLNK=6, VTOTAL=7, VESYNC=1, and
VEBLNK=2. (In actual applications, much larger values are used; these values
were chosen for illustration only.)

In interlaced mode, two separate vertical scans are performed for each frame -
one for the even line numbers (even field) and one for the odd line numbers
(odd field). The even field is scanned first, starting at the top left of the screen
(see Figure 9-9 b). When VCOUNT=VTOTAL, the vertical retrace returns the
beam to the top of the screen, and the odd field is scanned (Figure 9-9 d).
The electron beam starts scanning the odd and even fields at different points.
The reason for this is illustrated in Figure 9-10. The end of the VSYNC pulse
that precedes the even field coincides with start of an HSYNC pulse; however,
the VSYNC pulse that precedes the odd field ends exactly halfway between two
HSYNC pulses

Even Fleld 0Odd Fleld
A\ A\

/

\ /

Monlitor Screen Monltor Screen

Monitor Screen Monlitor Screen

i d

monitor screen.

Juxtaposition of even
and odd flelds on /*%

Figure 9-9. Electron Beam Pattern for Interlaced Video

In interlaced mode, video timing logic operation is altered so that the odd field
begins when HCOUNT=HTOTAL/2. The beam is thus positioned so that
horizontal scan lines in the odd field fall between horizontal scan lines in the
even field. To place each line of the odd field precisely between two lines of
the even field, load HTOTAL with an odd number.

Screen Refresh and Video Timing - Vertical Video Timing

The transition from d to a in Figure 9-9 shows that the vertical retrace at the
end of the odd field begins at the end of a horizontal scan line; that is, it co-
incides with the start of an HSYNC pulse, which results from the condition
HCOUNT=HTOTAL. The VSYNC pulse duration is an integral number of hor-
izontal scan retrace intervais. When vertical retrace ends and the active portion
of the next even field begins, the beam is positioned at the beginning of a
horizontal scan line.

Horizontal timing is similar for interlaced and noninterlaced displays.
HCOUNT is reset to O at the end of each horizontal scan line. A screen-refresh
cycle begins before the end of the line, coinciding with the start of the hori-
zontal blanking interval. Assuming that the starting corner of the display is the
upper left corner, the DUDATE field of the DPYCTL register is added to the
screen-refresh address (SRFADR in the DPYADR register) to generate the row
address for the next screen-refresh cycle. In interlaced mode, the DUDATE
value must be twice that of the value needed to produce the same display in
noninterlaced mode (that is, two times the difference in addresses between
consecutive scan lines). This causes the screen refresh to skip alternate lines
during the odd and even fields.

At the beginning of each vertical blanking interval, the screen-refresh address
(SRFADR in the DPYADR register) is loaded with the starting value specified
by the DPYSTRT register. When vertical blanking precedes an even field, the
new DPYADR row address is incremented by half the value in the DUDATE
field. This is in preparation to display line 2 (Figure 9-9 b). When vertical
blanking precedes an odd field, the row address loaded into DPYADR from
DPYSTRT is not incremented. In this case, the starting row address in
DPYSTRT points to the beginning of line 1 (Figure 9-9 d).

veount X 7 X0 X1 X2 X3 X4 X 5 X8 X7 X o XiXaX @ X 4 X5 X & X7
4 [

- H > 2

FSYNC
|

VSYNC

8 peeit-H/2 N2

(o)
LT U U U U U
L

S

! |
|

Vertical "]

9-12

s |____/\i///\

Even Field VSBLNK =
VESYNC =

VTOTAL = 7 0dd Field
VEBLNK = 2

Figure 9-10. Interlaced Video Timing Waveform Example

Screen Refresh and Video Timing - Display Interrupt

9.7 Display Interrupt

The TMS34010 can be programmed to interrupt the display when a specified
line is displayed on the screen. This is called a display interrupt. ltis ena-
bled by setting the DIE bit in the INTENB register to 1 and loading the DPY-
INT register with the desired horizontal scan line number. When VCOUNT =
DPYINT, the interrupt request is generated to coincide with the start of hori-
zontal blanking at the end of the specified line.

The display interrupt request can be polled by disabling the interrupt (setting
DIE=0) and checking the value of the DIP bit in the INTPEND register.
Writing a 0 to DIP clears the request.

The display interrupt has several applications. It can be used to coordinate
modifications of the bit map with the display of the bit map’s contents, for
example. While the bottom half of the screen is displayed, the GSP can modify
the bit map of the top half of the screen, and vice versa.

Another use for the display interrupt is in maintaining a cursor on the monitor
screen. The cursor image resides in the on-screen memory only during the
time the electron beam is scanning the lines containing the cursor. The cursor
remains free from flicker even during periods in which the TMS34010 busy
drawing to the screen. The technique is to load the DPYINT register with the
VCOUNT value of a scan line just above where the top of the cursor is to ap-
pear. When the display interrupt occurs, the interrupt service routine performs
the following tasks:

L] Sets DPYINT to the scan line just below the cursor,
(] Saves the portion of the screen where the cursor is to appear, and
° PixBlts the cursor onto the screen.

The cursor remains on the screen until the electron beam reaches the bottom
of the cursor, at which time a second interrupt request occurs. The original
screen is then restored, and the TMS34010 can resume drawing to the screen.

The display interrupt is also useful in split screen applications. By modifying
the contents of the DPYADR register halfway through a frame, different parts
of the bit map can be displayed on the top and bottom halves of the screen.
No special steps are necessary to ensure that loading a new value to DPYADR
does not interfere with an ongoing screen-refresh cycle. The display interrupt
is requested at the beginning of the horizontal blanking interval. If a screen-
refresh cycle occurs during the same horizontal blanking interval, the GSP
cannot respond to the interrupt request until the refresh cycle and subsequent
updating of DPYADR are complete. This is true whether the interrupt is taken
or the GSP simply polls the DIP bit and detects a 0-to-1 transition. After DIP
has been set to 1, DPYADR can be loaded with a new value to achieve the
split screen anytime before the next screen-refresh cycle.

In interlaced mode, the display interrupt can be used to detect the start of the
even field. For this purpose, the DPYINT register is loaded with the value from
the VESYNC register. Figure 9-10 (page 9-12) shows that during the odd
field, VCOUNT is incremented by 1 halfway through the horizontal interval
when the condition VCOUNT=VESYNC is detected. @ Assuming that
HSBLNK=HTOTAL/2, VCOUNT contains the value VESYNC+1 by the time
horizontal blanking begins. This means that if DPYINT=VESYNC, the display
interrupt is effectively prevented from occurring during the odd field.

Screen Refresh and Video Timing - Dot Rate

9.8 Dot Rate

A typical screen must be refreshed 60 times per second for a noninterlaced
scan or 30 times per second for an interlaced scan. For a noninterlaced dis-
play, the dot period (time to refresh one pixel) is estimated as:

(0.8)(1/60 second)
(pixels/line) x (lines/frame)

Dot Period =

For an interlaced display, the dot period is estimated as

(0.8) (1/30 second)
(pixels/line) x (lines/frame)

Dot Period =

The 0.8 factor in the numerator accounts for the fact that the display is typi-
cally blanked for about 20% of the duration of each frame. This factor varies
somewhat from monitor to monitor.

During each dot period, the complete information for one pixel must be ob-
tained from the display memory (or frame buffer). Thus, the rate at which vi-
deo data must be supplied from the display memory (which is usually the
limiting factor for large systems) is a function of pixel size as well as screen
dimensions.

Screen Refresh and Video Timing - External Sync Mode

9.9 External Sync Mode

External sync mode allows the TMS34010 to use horizontal and vertical sync
signals from an external source. This permits graphics images generated by
the GSP to be superimposed upon or mixed with images from external
sources.

External sync mode is selected by setting the DXV and HSD bits in the
DPYCTL register to 0. HSYNC and VSYNC are now configured as inputs. (Al-
ternately, HSYNC can be configured as an output and VSYNC as an input by
setting DXV=0 and HSD=1.) When an active-low sync pulse is input to one
of these pins, the corresponding counter (HCOUNT or VCOUNT) is forced to
alt 0s. By forcing the counters to follow the external sync signals, the blanking
intervals and screen-refresh cycles are also forced to follow the external video
signals.

The HSYNC and VSYNC inputs are sampled on each VCLK rising edge.
HCOUNT or VCOUNT are cleared 2.5 clock periods (on a VCLK falling edge)
following a high-to-low transition at the HSYNC or VSYNC pin, respectively.
BLANK remains an output, but its timing is affected because the point at which
HCOUNT and VCOUNT are cleared is controlled by the external sync signals.
The 2.5-clock delay must be considered when selecting values for the
HSBLNK and HEBLNK registers.

9.9.1 A Two-GSP System

One GSP can generate video timing for two GSPs. As Figure 9-11 shows,
GSP #1 is configured for internal sync mode (DXV=1) and generates the sync
timing. GSP #2 is configured for external sync mode (DXV=0 and HSD=0),
and receives the HSYNC and VSYNC inputs from GSP #1. Assume that the vi-
deo timing registers of the two devices are named as follows:

GSP #1 GSP#2
HCOUNT1 HCOUNT2
HESYNC1 HESYNC2
HSBLNK1 HSBLNK2
HEBLNK1 HEBLNK2
HTOTAL1 HTOTAL2
VCOUNT1 VCOUNT2
VESYNC1 VESYNC2
VSBLNK1 VSBLNK2
VEBLNK1 VEBLNK2
VTOTAL1 VTOTAL2

GSP #2's registers should be programmed in terms of the values in GSP #1's
registers, as shown in Table 9-1. The BLANK signals from GSP #1 and GSP
#2 are the same, and switch in unison on the same VCLK edges. When
HCOUNT1 is cleared on a VCLK falling edge, HCOUNT2 is cleared three full
VCLK periods later. For short horizontal blanking periods, HEBLNK2 may
need to be loaded with a value that is less than zero. For example, assume that
HSBLNK1=HTOTAL1-4 and HEBLNK1=1 (that is, the horizontal blanking
interval is six VCLK periods). To ensure that GSP #2's horizontal blanking
interval begins and ends at the same time as GSP #1's, GSP #2's registers
must be loaded with values so that HSBLNK2=HTOTAL1-8 and
HEBLNK2=HTOTAL1-2.

Screen Refresh and Video Timing - External Sync Mode

|
HCOUNT XN-1XN:X|0X1X2X3X4

HSYNC)\
(Output to GSP #2) . |

. le———2.5 Clooks —|
i)

Clear
GSP #2: | HCOUNT

HCOUNT XN—4XN—3XN-2XN-1XN§<OX1

Figure 9-11. External Sync Timing - Two GSP Chips

The values in HTOTAL2 and VTOTAL2 must be large enough so that the
conditions HCOUNT=HTOTAL and VCOUNT=VTOTAL do not cause
HCOUNT and VCOUNT, respectively, to be cleared before the leading edges
of the external horizontal and vertical sync pulses occur. In the example in
Table 9-1, HTOTAL2 and VTOTAL2 are set to their maximum values. The
value of HESYNC2 must be such that HCOUNT=HESYNC2 occurs between
the end of an external HSYNC pulse and the beginning of the next external
HSYNC pulse. The value of VESYNC2 must be such that VCOUNT=VESYNC2
occurs between the end of an external VSYNC pulse and the beginning of the
next external VSYNC pulse.

Tabile 9-1. Programming GSP #2 For External Sync Mode

HEBLNK2 = HEBLNK1 -3

HSBLNK2 = HSBLNK1 -3

HTOTAL2 = 65535

HESYNC2 = (HEBLNK2 + HSBLNK2)/2t
VEBLNK2 = VEBLNK1

VSBLNK2 = VSBLNK1

VTOTAL2 = 65535

VESYNC2 = (VEBLNK2 + VSBLNK2)/2 1

T Suggested value; see description in text.

Since the internal counter can only be resolved to the nearest VCLK edge,
precise synchronization with an external video source can be achieved only
when VCLK is harmonically related to the external horizontal sync signal. In
general, however, the HSYNC and VSYNC inputs are allowed to change asyn-
chronously with respect to VCLK, although the precise VCLK edge at which
an external sync pulse is recognized can be guaranteed only if the setup and
hold times specified for sync inputs are met.

Screen Refresh and Video Timing - External Sync Mode

9.9.2 External Interlaced Video

External sync mode can be used for both interlaced and noninterlaced dis-
plays. When locking onto external interlaced sync signals, the GSP discrimi-
nates between the odd and even fields of the external video signals based on
whether its internal horizontal blanking is active at the time that the start of the
external vertical sync pulse is detected. In Figure 9-10, for example, the even
field begins at a point where HBLNK is active low, and the odd field begins
while HBLNK is high.

In interlaced mode, the discrimination between the even and odd fields of an
external video source is based on the value of HCOUNT at a point two VCLK
periods past the rising VCLK edge at which the GSP detects the VSYNC input’s
high-to-low transition. If HCOUNT contains a value greater than the value in
HEBLNK, but less than or equal to the value in HSBLNK, the GSP assumes
that the vertical sync pulse precedes the start of an odd field. Otherwise, the
next field is assumed to be even. Alternatively, the GSP can be placed in
noninterlaced mode, even though the external sync signals it is locking onto
are for an interlaced display. In this case, the GSP simply causes identical
display information to be output to the monitor during the odd and even fields.

The program can determine at any time whether an even or odd field is being
scanned by inspecting the least significant bits of the DPYADR register to
determine whether they have been incremented by DUDATE/2. Recall that
that at the start of an even field, the initial address loaded into DPYADR from
the DPYSTRT register is automatically incremented by DUDATE/2 (that is,
incremented by half the value specified in the DUDATE field of the DPYCTL
register). At all other times, DPYADR is incremented by DUDATE rather than
DUDATE/2.

Screen Refresh and Video Timing - Video RAM Control

9.10 Video RAM Control

The TMS34010 automatically schedules the VRAM (video RAM) memory-
to-register cycles needed to refresh a video monitor screen. These cycles are
referred to as screen-refresh cycles.

In addition to automatic screen-refresh cycles, the GSP can be configured to
perform memory-to-register and register-to-memory cycles under the explicit
control of software executing on the GSP’s internal processor. One of the
primary uses for this capability is to facilitate nearly instantaneous clearing of
the screen. The screen is cleared in 256 memory cycles or less by means of a
technique referred to here as bulk initialization of the display memory.

9.10.1 Screen Refresh

A screen-refresh cycle ioads the VRAM shift registers with a portion of the
display memory corresponding to a scan line of the display. The internal re-
quests for these cycles occur at regular intervals coinciding with the start of
the horizontal blanking intervals defined by the video timing registers. When
horizontal blanking ends, the contents of the shift registers are clocked out
serially to drive the video inputs of a monitor. A screen-refresh cycle typically
occurs prior to each active line of the display.

9.10.1.1 Display Memory

9-18

The display memory is the area of memory which holds the graphics image
output to the video monitor. This memory is typically implemented with
VRAMs. During a screen-refresh cycle, a portion of the display memory cor-
responding to one (or possibly more) scan lines of the display are loaded into
the VRAM shift registers. Depending on the screen dimensions selected, not
all portions of the display memory are necessarily output to the monitor.

The width of the display memory is referred to as the screen pitch, which is the
difference in 32-bit memory addresses between two vertically-adjacent pixels
on the screen. The screen pitch is aiso the difference in starting memory ad-
dresses of the video data for two consecutive scan lines. When XY addressing
is used, the screen pitch must be a power of two to facilitate the conversion
of XY addresses to memory addresses. The value loaded into the DUDATE
field of the DPYCTL register represents the screen pitch, and is the amount
by which the screen-refresh address is incremented (or decremented) follow-
ing each screen-refresh cycle.

The portion of display memory that is actually output to the monitor is referred
to as the on-screen memory. The starting location of the on-screen memory
is specified by the SRFADR field in the DPYSTRT register.

The starting screen-refresh address is output during the screen-refresh cycle
that occurs at the start of each frame. At the end of the screen-refresh cycle,
the address is incremented to point to the area of memory containing the pixels
for the second scan line. The process is repeated for each subsequent scan
line of the frame.

Screen Refresh and Video Timing - Video RAM Control

A screen-refresh cycle typically affects all video RAMs in the system. A me-
mory-to-register cycle transfers data from a selected row of memory to the
internal shift register of each VRAM. The data is then shifted out to refresh the
display.

A screen-refresh cycle takes place during the horizontal blanking interval that
precedes a scan line to be displayed. Typically, the shift registers containing
the video data for the line are clocked only during the active portion of the
scan line, that is, when the BLANK output is high. At higher dot rates, the pixel
clock or dot clock used to shift video data to the monitor is run through a
frequency divider to create the VCLK signal input to the GSP.

The 8-bit row address output during the screen-refresh cycle specifies the row
in memory to be loaded into the shift register internal to the VRAM. The
number of bits of video data transferred to the shift registers of ali the VRAMs
in the system during a single screen-refresh cycle is calculated by multiplying
the number of VRAMSs times the length of the shift register in each VRAM.
For example, 64 TMS4161 (64K-by-1) VRAM devices are sufficient to con-
tain the bit map for a 1024-by-1024-pixel display with four bits per pixel. The
length of the shift register in each TMS4161 is 256 bits. Thus, in a single
screen-refresh cycle, a total of 64 times 256, or 16,384, bits are loaded. This
is enough data to refresh four complete scan lines of the display. In general,
a single screen-refresh cycle performed during a horizontal blanking interval
is sufficient to supply one or more complete scan lines worth of data to the
video monitor screen.

9.70.1.2 Generation of Screen-Refresh Addresses

The DPYADR, DPYCTL, DPYSTRT, and DPYTAP registers are used to gener-
ate the addresses output during screen-refresh cycles. Figure 9-12 shows
these four registers, and indicates the register fields which determine the way
in which screen-refresh addresses are generated.

15
DPYADR [=~ = =~ SRFADR

DPYSTRT [. - eReiRT

Screen Refresh and Video Timing - Video RAM Control

9-20

° DPYADR contains the SRFADR field, which is a counter that generates
the addresses output during screen-refresh cycles.

® DPYSTRT contains the SRSTRT field, the starting address loaded into
SRFADR at the beginning of each frame.

° DPYCTL contains several fields that affect screen-refresh addresses. The
8-bit DUDATE field is loaded with seven Os and a single 1 that points
to the bit position within SRFADR (bits 2-9 of DPYADRY) at which the
address is to be incremented (or decremented) at the end of each
screen-refresh cycle. The ORG bit determines whether the screen-
refresh address is incremented or decremented. If ORG=0, the screen
origin is located at the top left corner of the screen and the address is
incremented; otherwise, it is decremented. The NIL bit determines
whether the GSP is configured to generated an interlaced (NIL=0) or
noninterlaced (NIL=1) display. The generation of screen-refresh ad-
dresses can be modified to accommodate either type of display.

® The DPYTAP register is used to specify screen-refresh address bits to
right of the position at which DUDATE increments the address. DPY-
TAP provides the additional control over screen-refresh address gener-
ation necessary to allow the screen to pan through the display memory.

Bits not directly involved in address generation are shaded in Figure 9-12.

The address output during a screen-refresh cycle identifies the starting pixel
on the scan line about to be output to the monitor. Figure 9-13 (page 9-21)
shows a 32-bit logical address of the first pixel on one of the scan lines ap-
pearing on the screen. The screen-refresh address consists of bits 4-23 of the
logical address, which are generated by combining the values contained in
SRFADR and DPYTAP. Where SRFADR and DPYTAP overlap (bits 10-17
of the logical address), the address bits are generated by logical ORing the
corresponding bits of SRFADR and DPYTAP. The 8-bit DUDATE value con-
tains seven Os and a single 1 pointing to the position at which SRFADR is to
be incremented (or decremented). The DPYTAP register should be loaded
with the portion of the pixel address in Figure 9-13 lying to the right of the
position indicated by the DUDATE pointer bit. SRFADR contains the portion
of the pixel address that is incremented by the DUDATE pointer bit.

Following system power up, the software should load the starting screen-
refresh address into the SRSTRT field of the DPYSTRT register, and load the
increment to the screen-refresh address into the DPYCTL register. For a typi-
cal CRT display, the starting address is the address in memory of the pixel that
appears in the upper left corner of the display. If ORG bit in DPYCTL is O, the
1s complement of the starting address should be loaded into DPYSTRT. If
ORG=1, the starting address loaded into DPYSTRT shouid not be comple-
mented.

DPYADR is automatically loaded with the starting display address from
DPYSTRT prior to the start of each frame. As shown in Figure 9-14 a, bits
2-15 of DPYSTRT (SRSTRT) are loaded into bits 2-15 of DPYADR
(SRFADR). The load occurs coincident with the start of the horizontal
blanking interval that occurs just at the end of the last active scan line of the
preceding frame.

Screen Refresh and Video Timing - Video RAM Control

Output During Row Address Time
o\

{ —\ Output Durin
5 E Column Addrness Time
J\
' { | N
] 1] 1
] 1] 1
1)] :
31 28 241 20 18 12i 8 4
[32-Bit Logioal Plxel Address C J

1 M
¢ SRFADR N
| (DPYADR Bits 2-15)

Figure 9-13. Logical Pixel Address

The address output during each screen-refresh cycle is contained in bits 2
through 15 of the DPYADR register (the 14-bit SRFADR field). As shown in
Figure 9-14 b, DPYADR bits 4-15 are output at the LADO-LAD11 pins during
the row address time of the screen-refresh cycle. If ORG=0, the DPYADR bits
are inverted before being output; otherwise, they are output unaltered. Zeros
(logic-low levet) are output on LAD12-LAD14, and a one (logic-high level)
is output on LAD15; this is the RF status bit.

During the column address time of the screen-refresh cycle, bits 2-6 of
DPYADR are output at LAD6~LAD10. If ORG=0, the DPYADR bits are in-
verted before being output. DPYTAP bits 6-11 are ORed with DPYADR bits
2-7 and output at LAD6-LAD11. Bits 0-5 and 12-13 of DPYTAP are output
at LADO-LAD5 and LAD11-LAD13, respectively. Zeros are output at
LAD14-LAD15 (the TR and |AQ status bits).

After the row and column addresses have been output, the address in
DPYADR bits 2-15 is decremented by the 8-bit value in DPYCTL bits 2-9 (the
DUDATE field). This is done in preparation for the next screen-refresh cycle.
The 8-bit DUDATE value is a binary number consisting of seven 0s and a
single 1. This single 1 indicates the position at which DPYADR is decre-
mented. If ORG=0, the screen-refresh address in DPYADR is effectively in-
cremented; the 1s complement of the address contained in DPYADR s
decremented by the DUDATE amount, but is inverted before being output.
This is equivalent to incrementing the address. If ORG=1, the address is de-
cremented.

9-21

Screen Refresh and Video Timing - Video RAM Control

SRSTRT
A
16 14 13 121110 9 8 7 6 5§ 4 3 2 1 0
Register ‘ 1. 7.ttt 070,000 0 | L
L) L} l""'l‘l'l 'I T L l" T’ T
R’gm‘rllllllllllllilll1
SRFADR

(a) Display-Address Initial Value

141312110 0 8 7 6 6§ 4 3 210
LUPULEDWL RV B AR [RGL RO R R B S T
wate[I 1 L 'l L 1 L L L Ll 1 1 1 | 1

ORG

Y

(b) Row-Address Time

Figure 9-14. Screen-Refresh Address Generation

9-22

Screen Refresh and Video Timing - Video RAM Control

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
DPYADR T Y T T Y T T T Y T T T T I T I
1

Register 1 1 1 N L 1 i L A 2N
ORG EI—

AAN L

S
l A
0
{
i -1 I
DPYTAP I i
Register | w2
5[] |
14 |r -3
13| @ | w4
12| ® :
11| @& i 5

b
10| e — l»6 :
9l e - {
8l o] 7

[1 I i
71 &

R] 8 |
6le :
5| @ '_’9 |

N |
4_‘_ —a 10 |
3l e {
2 — 11 |

" |
1- . > 12 |
0 |

L i

Ir>13 |
|
0—4—»14(TR) |
|
0——-15(IAQ)=
e

(c) Column-Address Time

Figure 9-14. Screen-Refresh Address Generation {Continued)

9-23

Screen Refresh and Video Timing - Video RAM Control

ool |
Carry In]<—1
|

)
-
~
™
L <¢| @
vle
e
o|le®
-
NF'.
LI g
- 4 g
- ole <
> O
2le
- —
-
> Cle
oF >
> | & —
Cle
> el b
4 —d
- 0
ve
I | gug
-
O__ §.§ -
[-d
o
- G
| o
™| @
< | o
w L]
: o | 0
g L]
g ©o| e
*
~1 e
o | 0
o | e+
)
-
A
-
L 4
~
-
©
-
<
-
-]
-
-
[1
]
o
a
&

(d) Display-Address Update

Figure 9-14. Screen-Refresh Address Generation (Concluded)

9-24

Screen Refresh and Video Timing - Video RAM Control

9.10.1.3 Screen Refresh for Interlaced Displays

The size of the DUDATE increment specified for an interlaced display should
be twice that required for a noninterlaced display of the same dimensions.
This allows every other line to be skipped during the even or odd field of an
interlaced frame. Before the start of the even field, half the value of the DU-
DATE increment is added to the starting address loaded into DPYADR to ob-
tain the necessary starting displacement. The SRSTRT field in DPYSTRT
points to the area of memory containing the video data for scan line 1 in the
example of Figure 9-9 on page 9-11.

9.10.1.4 Panning the Display

The DPYTARP register supports horizontal panning of the screen across a dis-
play memory that is larger than the screen. The value contained in the low-
order bits of DPYTAP furnish the LSBs of the column address output during
the screen-refresh cycle. Incrementing this value results in panning to the
right; decrementing this value results in panning to the left.

9.70.1.5 Scheduling Screen-Refresh Cycles

The internal request for a screen-refresh cycle is generated when horizontal
blanking begins. This gives the GSP essentially the entire horizontal blanking
interval in which to perform the screen-refresh cycle. The delay from the start
of horizontal blanking to the start of the screen-refresh cycle is called the
screen-refresh latency, and is determined by the internal memory controller.

The best and worst case screen-refresh latencies are given in Table 9-2. In the
best case, the delay from the high-to-low transition of the BLANK output to the
start of the screen-refresh cycle (the time the row address is output) is only
3.25 machine states (or local clock periods). In the worst case, the delay is
(7.25 + 2W) states, where W represents the number of wait states required
per memory cycle. The worst case number is based on the fact that the start
of the screen-refresh cycle can be delayed by up to three states if a read-
modify-write operation began one state before the memory controller received
the request for the screen-refresh cycle. A screen-refresh request is given
higher priority than requests for DRAM-refresh, host-indirect or GSP CPU
cycles; hence, no further delays occur unless an external device generates a
hold request.

Table 9-2. Screen-Refresh Latency

Min Max
3.25 states (7.25 + 2W) states

Note: W is the number of wait states per memory
cycle.

The horizontal blanking interval should be sufficiently long in duration for the
screen-refresh cycle to be completed before blanking ends. The required mi-
nimum blanking interval is therefore about (9.25 + 3W) machine states, de-
pending on how soon after the end of blanking the external video logic begins
clocking the VRAM shift registers. Of course, this time must be transiated from

9-25

Screen Refresh and Video Timing - Video RAM Control

machine states (local clock periods) to VCLK periods to program the HEBLNK
register.

The horizontal sync pulse is permitted to be as small as a single VCLK period
in duration.

No screen-refresh cycles are performed during vertical blanking until nearly the
end of vertical blanking - at the start of the horizontal blanking interval that
precedes the first active scan line of the new frame.

The screen-refresh latency specified in Table 9-2 assumes that a local bus hold
request (HOLD low) is not asserted between the start of blanking and the start
of the screen-refresh cycle. If a hold request prevents the TMS34010 from
initiating a scheduled screen-refresh cycle during this time, the TMS34010 is
forced to delay its screen-refresh cycle until the bus is released by the external
device asserting the hold request. A hold request occurring during the hori-
zontal blanking interval preceding an active scan line on the display should
be deasserted in time to allow the TMS34010 to complete the pending
screen-refresh cycle before blanking ends. If a screen-refresh cycle is pending
at the time the external device releases the bus, the screen-refresh cycle is the
first cycle performed by the TMS34010 after it regains control of the bus.

9.10.2 Video Memory Bulk Initialization

9-26

VRAMs may be rapidly loaded with an initial value using a special GSP feature
that converts pixel accesses to register transfers. This rapid loading method
is referred to as bulk initialization of the video memory, and can be used with
VRAMs such as the TMS4461. When the SRT (shift register transfer) bit in
the DPYCTL register is set to a 1, all reads and writes of pixel data are con-
verted at the memory interface of the GSP to register-transfer cycles. When
SRT=0, pixel accesses are performed in normal fashion.

When SRT=1, the processor can initiate register-transfer cycles under explicit
program control. By performing a series of such cycles, some or all of the
display memory can be set to an initial background color or pattern very rapidly
(in a small fraction of one frame time). First, the VRAM shift registers are
loaded with the initial value. The video memory is then set to the initial color
or pattern one row at a time by writing the shift register contents to the me-
mory.

During a register-transfer cycle (when SRT=1), the row and column addresses
are output in unaltered form; that is, the address is not affected by the state
of SRT. The 8-bit row address output during the cycle designates which row
in memory is involved in the transfer. The direction of the transfer is deter-
mined by whether the cycle is a read or a write. A write cycle such as a PIXT
transfer from a general-purpose register to memory is converted to a VRAM
register-to-memory cycle. Similarly, a read cycle such as a PIXT transfer from
memory to a general-purpose register is converted to a VRAM memory-to-
register cycle.

Only pixel transfers are affected by the SRT bit. The manner in which ali other
data accesses and instruction fetches are performed is not affected.

Screen Refresh and Video Timing - Video RAM Control

Before bulk initialization of the display memory, the VRAM shift registers are
loaded with the solid color or pattern with which the display memory is
loaded. This can be done in one of two ways, by either:

L] Serially shifting bits into the shift register
or

® First loading a row of display memory with the color or pattern using a
series of “normal” pixel writes (when SRT=0), and then loading the
contents of this row into the shift register by means of a PIXT memo-
ry-to-register instruction (executed while SRT=1).

To speed up the bulk initialization operation further, a series of transfers can
be made more rapidly by using a single FILL instruction in place of a series of
PIXT instructions. The fill region is selected so that each pixel write cycle
generates a new row address. The fill region is specified to be precisely 16
bits wide, the width of the memory data bus. Also, plane masking is disabled,
transparency is turned off, and the pixel processing replace operation is se-
lected. This ensures that each row is addressed only once during the course
of the fill operation.

The number of bits of the display memory that are altered by a single regis-
ter-to-memory transfer cycle is calculated by multiplying the number of VRAM
devices by the number of shift register bits in each device. The entire frame
buffer is loaded with the initial color or pattern in 256 memory cycles.

9-27

Screen Refresh and Video Timing

9-28

Section 10

Host Interface Bus

A host processor can communicate with the TMS34010 by means of an in-
terface bus consisting of a 16-bit data path and several transfer-control sig-
nals. The TMS34010’s host interface provides a host with access to four
programmable 16-bit registers (resident on the TMS34010), which are
mapped into four locations in the host processor's memory or |/O address
space. Through this interface, commands, status information, and data are
transferred between the TMS34010 and host processor.

A host processor may read from or write to TMS34010 local memory indirectly
via an autoincrementing address register and data port. This optional autoin-
crement feature supports efficient block moves. The TMS34010 and host can
send interrupt requests to each other. A pin is dedicated to the interrupt re-
quest from the TMS34010 to the host. To allow block moves initiated by a
host to take place more efficiently, the host may suspend TMS34010 program
execution to eliminate contention with the TMS34010 for local memory.
DRAM-refresh and screen-refresh cycles continue to occur while the
TMS34010 is halted.

This section includes the following topics:

Section
10.1 Host Interface Bus PinsScccccvioeiiieiriiinrevsieiieecteene s sreesisssseseseessienes
10.2 Host Interface Registers

10.3 Host Register Reads and Writes
10.4 Bandwidthcccoeovrieiciieie,
10.5 Worst-Case Delay

10-1

Host Interface Bus - Pins/Registers

10.1 Host Interface Bus Pins

The TMS34010's host interface bus consists of a 16-bit bidirectional data bus
and nine control lines. These signals are described in detail in Section 2.

HDO-HD15
form a 16-bit bidirectional bus, used to transfer data between the
TMS34010 and a host processor.

HCS is the host chip select signal. It is driven active low to allow a host
processor to access one of the host interface registers.
HFSO0, HFS1

are function select pins. They specify which of four host interface
registers a host can access (see Section 10.2).

HREAD s driven active low to allow a host processor to read the contents
of the selected host interface register, output on HDO-HD15.

HWRITE is driven active low to allow a host processor to write the contents
of HDO-HD15 to the selected host interface register.

HLDS is driven low to enable a host processor to access the lower byte
of the selected host interface register.

HUDS is driven low to enable a host processor to access the upper byte
of the selected host interface register.

HRDY informs a host processor when the TMS34010 is ready to com-
plete an access cycle initiated by the host.

HINT transmits interrupt requests from the TMS34010 to a host proces-
sor.

10.2 Host Interface Registers

10-2

The host interface registers are a subset of the 1/0 registers discussed in Sec-
tion 6. The host interface registers can be accessed by both the TMS34010
and the host processor. These registers occupy four 16-bit locations in the
host processor’'s memory or |/O address map. One of these four locations is
selected by placing a particular code on the two function select inputs, HFSO
and HFS1, as shown in Table 10-1.

Table 10-1. Host Interface Register Selection

HFS1 | HFSO| Selected
Register
0 0 HSTADRL
0 1 HSTADRH
1 0 HSTDATA

1 1 HSTCTL

A 16-bit host processor typically connects two of its low-order address lines
to HFSO and HFS1. An 8-bit processor typically connects two low-order ad-
dress lines to HFSO-HFS1 and uses a third low-order address bit to enable
either the upper or lower byte of the selected register by activating one of the

Host Interface Bus - Registers

byte select inputs, HUDS or HLDS. In the second case, the registers occupy
eight 8-bit locations in the host processor's memory map.

[] The HSTADRL and HSTADRH registers contain the 16 LSBs and 16 MSBs,
respectively, of a 32-bit pointer address. A host processor uses this address
to indirectly access TMS34010 local memory.

® The HSTDATA register buffers data that is transferred through the host inter-
face between TMS34010 local memory and a host processor. HSTDATA
contains the contents of the address pointed to by the HSTADRL and
HSTADRH registers.

[] The HSTCTL register is accessible to the TMS34010 as two separate |/0 re-
gisters, HSTCTLL and HSTCTLH, but is accessed by a host processor as a
single 16-bit register. HSTCTL contains several programmable fields that
control host interface functions.

- NMI (nonmaskable interrupt, bit 8): Allows a host processor to interrupt
TMS34010 execution.

- NMIM (NMI mode, bit 9): Specifies if the context of an interrupted
program is saved when a nonmaskable interrupt occurs.

- CF (cache flush, bit 14): Setting this bit flushes the contents of the
TMS34010 instruction cache. A host processor can force the TMS34010
to execute new code after a downioad by flushing old instructions out
of cache.

— LBL (lower byte last, bit 13): Specifies which byte of a register an 8-bit
host processor accesses first.

— INCR (increment address before local read, bit 12): Controls whether the
32-bit pointer in the HSTADR registers is incremented before being used
in a local read cycle that updates the HSTDATA register.

- INCW (increment address after local write, bit 11): Controls whether the
32-bit pointer in the HSTADR registers is incremented after being used
in a local write cycle that transfers the contents of the HSTDATA register
to memory.

— HLT (halt TMS34010 program execution, bit 156): A host processor can
halt the TMS34010’s on-chip processor by setting this bit to 1.

- MSGIN (message in, bits 0-2): Buffers a 3-bit interrupt message from a
host processor to the TMS34010.

= INTIN (input interrupt bit, bit 3): A host must load a 1 into this bit to
generate an interrupt request to the TMS34010.

- MSGOUT (message out, bits 4-6): Buffers a 3-bit interrupt message
from the TMS34010 to a host.

— INTOUT (Interrupt out, bit 7): The TMS34010 must load a 1 to this bit
to send an interrupt request to a host processor.

10-3

Host Interface Bus - Reads and Writes

10.3 Host Register Reads and Writes

10-4

Host interface read and write cycles are initiated by the host processor and are
controlled by means of the HCS, HAWRITE, HREAD, HUDS, and HLDS signals.
Host-initiated accesses of the register selected by the function-select code
input on HFSO and HFS1 are controlled as follows:

® While HCS, HLDS, and HWRITE are active low, the contents of HDO-HD7
are latched into the lower byte of the selected register.

® While HCS, HUDS, and HWRITE are active low, the contents of
HD8-HD15 are latched into the upper byte of the selected register.

® While HCS, HLDS, and HREAD are active low, the contents of the lower
byte of the selected register are driven onto HDO-HD?7.

® While HCS, HUDS, and HREAD are active low, the contents of the upper
byte of the selected register are driven onto HD8-HD15.

As this list indicates, at least three control signals must be active at the same
time to initiate an access. The last of the three signals to become active begins
the access, and the first of the three signals to become inactive signais the end
of the access. A signal that begins or completes an access is referred to in the
following discussion as the strobe signal for the cycle. Any of the signals
listed above may be a strobe. Figure 10-1 shows a functional representation
of the logic that controls the TMS34010’s host interface.

TM834010

HACS Wrtte t
FWRITE [byt of selectea
register

Write to |
’—D_ J_L Mo?:t o? nmed
HLDS register

Read from upper

I I byte of selected
register

Read from lower
| | byte of selected
register

Figure 10-1. Equivalent Circuit of Host Interface Control Signals

Host Interface Bus - Reads and Writes

The designer must ensure that HREAD and HWRITE are never active low si-
multaneously during an access of a host interface register; this may cause in-
ternal damage to the device.

10.3.1 Functional Timing Examples

The functional timing examples in this section are based on the circuit shown
in Figure 10-1.

L] The HCS input is the strobe in Figure 10-2 and Figure 10-3.
® The HWRITE signal is the strobe in Figure 10-4.

® The HREAD signal is the strobe in Figure 10-5.
[]

The HUDS and HLDS signals are strobes in Figure 10-6 and Figure 10-7.

l'v‘b‘b"'l.v"‘v‘\ 0’#’0‘0‘0’0‘0’0’0‘!’t‘t’.‘b’n“'ﬁ”"’»‘t‘h
HFSO0-HFS1 o Valid Funotion Select N

G0N0

|\
—

—/
—\

s\ Enavle Witte to LowerByte /
__/ iwhorwietoUpperByte \

HUDS

I N

R OOOCOOCOTRROCODIUCOO0Y

OO XXX XXX XXNIXS
DO OO OO0

DOO000SIOAO000OR00
(OO0 OO0
PRI

2.

vy
HDO~-HD156 :;:.:,:.}:‘:':.:‘:,:....':q..:o:.:.:-}:{{-’.:»:.:.:.:.:. Valid Data In

RN Y

HRDY (High)

Figure 10-2. Host 8-Bit Write with HCS Used as Strobe

10-5

Host interface Bus - Reads and Writes

vnnnv'nnuunn
GO OO

COUMUOLOROTOROLO
DO

Valild Function Select

g

Inhibit Read from Lower Byte \
Enable Read from Upper Byte /

T\ /

HDO-HD1 - ———— e ——— (valdDataot H»———————

—/

HREAD_\ /————
7/
A\

HRDY (High)

Figure 10-3. Host 8-Bit Read with HCS Used as Strobe

Q0000 SIS s b
QOO 0 Q000
R alld Fun Seleot DX
HFSO-HFE1 XX Valid Function Sele

00000

HLDS \ Enable Read from Lower Byte /
HUDS \ Enable Read from Upper Byte {

HDO-HD15 ~— — — — ———— — (valdpstaott Y———————

HRDY (High)
Figure 10-4. Host 16-Bit Read with HREAD Used as Strobe

10-6

Host Interface Bus - Reads and Writes

DOOOO0 ‘""v OO0 ‘0'1 + h.l‘q + .‘nlc 0.0‘5 OO
A, Valid Function Select A
SRR BRI
HFS0-HFS1 XU nction Sele KA
N S

o 7 —
s\ [
U
WOE \ EnavewmetouUpperiyte /-

ARy
GO XK AX KNI
OX0000000000000N0
nuuunuunnnnu
DRI

N ey
onyn-un-uunnn-unun
OO AK NS
.u e o
I

Valid Data In

HRDY (High)

Figure 10-5. Host 16-Bit Write with HWRITE Used as Strobe

SO e
nnuiu-nnunnu
RO
QOOOCCROCR XD
WA

"0'0'0\‘0'! 4
HFS0-HFE1 Valid Function Select

HWRITE

—/
s\ [
A\

iDs Strobe Low Byte

HOBE Strobe High Byte

HDO-HD15 Valid Data In

QOCO0000000 uuunuuunt g
AN

HRDY (High)

Figure 10-6. Host 16-Bit Write with HLDS, HUDS Used as Strobes

10-7

Host Interface Bus - Reads and Writes

l’O’"O‘I'0‘0'0’0'0'!‘;%'ﬁ‘v‘v"’l‘i‘l‘b‘l
Valid Funotion Seleoct QRO

T\ o/
HDO-HD1§ -————————— (vadpataout »}———————
HRDY (High)

Figure 10-7. Host 16-Bit Read with HLDS, HUDS Used as Strobes

10.3.2 Ready Signal to Host

10-8

The default state of the bus ready output pin, HRDY, is active high. HRDY is
driven inactive low to force the host processor to wait in circumstances in
which the TMS34010 is not prepared to allow a host-initiated register access
to be completed immediately.

HRDY is always driven low for a brief period at the beginning of a read or write
access of the HSTCTL register. When the host attempts to read from or write
to the HSTCTL register, HRDY is driven low at the beginning of the access,
and is driven high again after a brief interval of one to two local clock cycles.

When the host processor performs certain types of host interface register ac-
cesses, a local memory cycle results. For example, in reading from or writing
to the HSTDATA register, a read or write cycle on the local bus results. If the
host processor attempts to perform an access that initiates a second local
memory cycle before the TMS34010 has had sufficient time to complete the
first, the TMS34010 drives its HRDY output low to indicate that the host must
wait before completing the access. When the TMS34010 has completed the
local memory cycle resulting from the previous access, it drives HRDY high to
indicate that the host processor can now complete its second access.

A data transfer through the host interface takes place only when some com-
bination of HCS, HREAD, HWRITE, HUDS, and HLDS are active simultaneously;
however, the HRDY signal is activated by the HCS input alone. HRDY can be
active-low only while the TMS34010 is chip-selected by the host processor,

Host Interface Bus - Reads and Writes

that is, while HCS is active low. A high-to-low transition on HRDY follows a
high-to-low transition on HCS. The benefit of this mode of operation is that
HRDY becomes valid as soon as HCS goes low, which typically is early in the
cycle. HRDY is always driven high when HCS is inactive high.

A transient low level on the HCS input may cause a corresponding low pulse
on the HRDY output. Systems that cannot tolerate such transient signals must
be designed to prevent HCS from going low except during a valid host inter-
face access.

In summary, the following rules govern the HRDY output:

1)

2)

3)

If a high-to-low HCS transition occurs while the TMS34010 is still
completing a local memory cycle resulting from a previous host-indirect
access, HRDY goes low. If the register selected is HSTDATA, HSTADRL
or HSTADRH, HRDY remains low until the local memory cycle is com-
pleted. If the register selected is HSTCTL, the HRDY output remains low
for one to two local clock periods.

If the host is given a ready signal (HRDY high) to allow it to complete
a register access that causes a local memory read or write cycle, HRDY
stays high to the end of the access. The access ends when the strobe
for the cycle ends. The strobe ends when HREAD and HWRITE are both
inactive high, or when HLDS and HUDS are both inactive high, or when
HCS is inactive high, whichever is the first to occur. As soon as the
strobe ends, a low level on HCS allows HRDY to go low again. If the
strobe is an input other than HCS, and HCS remains low after the strobe
ends, HRDY can go low as a delay from the end of the strobe. If HCS is
the strobe for the access, the access ends when HCS goes high, and
HRDY can go low again as soon as HCS goes low again.

If HSTCTL is selected (FSO = FS1 = 1) at the high-to-low transition
of ACS, HRDY goes low as a delay from the fall of HCS, and remains low
for one to two local clock periods. To avoid a low-going pulse on HRDY
when accessing a register other than HSTCTL, FSO and FS1 should be
valid prior to the high-to-low transition of HCS.

Figure 10-8 and Figure 10-9 (page 10-10) show examples of host interface
register accesses in which HRDY is driven low.

10-9

Host Interface Bus - Reads and Writes

oo B v s Y
wes] -
s T\ V
e T\ S
woy \ -/
T B

HFS0-HFE1 W Valid Function Select

e/

Figure 10-9. Host Interface Timing - Read Cycle With Wait

10-10

Host Interface Bus - Reads and Writes

10.3.3 Indirect Accesses of Local Memory

The host processor indirectly accesses TMS34010 local memory by reading
from or writing to the HSTDATA register. HSTDATA buffers data written to
or read from the local memory. The word in local memory that is accessed is
the word pointed to by the 32-bit address contained in the HSTADRL and
HSTADRH registers. The pointer address is loaded into HSTADRL and
HSTADRH by the host processor before performing one or more indirect ac-
cesses of local memory using the HSTDATA register.

The four LSBs of HSTADRL are forced to Os internally so that the address
formed by HSTADRL and HSTADRH always points to a word boundary in
local memory. Between successive indirect accesses of local memory using
the HSTDATA register, the local memory address contained in the HSTADR
registers can be autoincremented by 16. This allows the host processor to
access a block of sequential words in local memory without the overhead of
loading a new address prior to each access.

During a sequence of one or more indirect reads of local memory by the host,
the TMS34010 maintains in HSTDATA a copy of the local memory word cur-
rently addressed by the HSTADRL and HSTADRH registers. Reading from
HSTDATA returns the word prefetched from the local memory location
pointed to by the HSTADRL and HSTADRH registers, and causes HSTDATA
to be updated from local memory again. Writing to HSTDATA causes the
word written to HSTDATA to subsequently be written to the location in local
memory pointed to by the HSTADRL and HSTADRH registers.

Two increment-control bits, INCR and INCW (contained in the HSTCTL reg-
ister), are set to 1 to cause the pointer address in HSTADRL and HSTADRH
to be incremented by 16 during reads and writes, respectively. In preparing
to use the autoincrement feature, the appropriate increment-control bit, INCR
or INCW, is loaded with a 1, and the HSTADRL and HSTADRH registers are
set up to point to the first location of a buffer region in the local memory.

e When INCR=1, a read of HSTDATA causes the address in HSTADRL
and HSTADRH to be incremented before it is used in the local memory
read cycle that updates HSTDATA.

® When INCW=1, a write to HSTDATA causes the address in HSTADRL
and HSTADRH to be incremented after it is used in the local memory
read cycle that writes the new contents of HSTDATA to local memory.

Loading the pointer address automatically triggers an update of HSTDATA to
the contents of the local memory word pointed to. No increment of HSTADRL
and HSTADRH takes place at this time regardless of the state of the increment
bits. Each subsequent host access of HSTDATA causes HSTADRL and
HSTADRH to be automatically incremented (assuming INCR or INCW is set)
to point to the next word location in the local memory. In this manner, a series
of contiguous words in local memory can be accessed following a single load
of the HSTADRL and HSTADRH registers without additional pointer-
management overhead.

10-11

Host Interface Bus - Reads and Writes

10.3.3.1 Indirectly Reading from a Buffer

10-12

Figure 10-10 illustrates the procedure for reading a block of words beginning
at local memory address V. Assume that the INCR bit in the HSTCTL register
is set to 1 and the LBL bit in HSTCTL is set to 0.

In Figure 10-10 a, the host processor loads the 32-bit address NV into
HSTADRL and HSTADRH.

The loading of the second half of the address into HSTADRH causes the
TMS34010 host interface control logic to automatically initiate a read
cycle on the local bus. This read cycle, shown in Figure 10-10 b,
transfers the contents of memory address N to the HSTDATA register.

In ¢, the host processor reads the HSTDATA register, fetching the data
previously read from address V.

The read of HSTDATA by the host processor causes the TMS34010 to
automatically increment the contents of HSTADRL and HSTADRH by
16, as shown in d.

The contents of the new address are read into HSTDATA, as shown in
Figure 10-10 e. This data will be available in HSTDATA the next time
it is read by the host processor.

The process shown in ¢ through e repeats for every word read from
TMS34010 local memory.

Host Interface Bus - Reads and Writes

(a)

()

(c)

(d)

(e)

Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
2
HSTDATA
Host Host Local
Processor interface Memory
Registers
HSTADRH HSTADRL
i [T A |
HETDATA /
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
s T—— A]
\ HSTDATA
Host Host Local
Processor Interface Memory
Reglsters
HSTADRH, HSTADRL
HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
— s —— B
/ :
HSTDATA]

N+18
N

N+168
N

N+168
N

N+16
N

N+18

0

Figure 10-10. Host Indirect Read from Local Memory (INCR=1)

10-13

Host interface Bus - Reads and Writes

10.3.3.2 Indirectly Writing to a Buffer

10-14

Figure 10-11 illustrates the procedure for writing a block of words to
TMS34010 local memory. The block begins at address /. Assume that the
INCW bit is set to 1 and the LBL bit is set to 0.

In Figure 10-11 a, the host processor loads the 32-bit address N into
HSTADRL and HSTADRH.

The loading of the second half of the address into HSTADRH causes the
TMS34010 host interface control logic to automatically initiate a read
cycle on the local bus. This read cycle, which takes place in Figure
10-11 b, fetches the contents of memory address N into HSTDATA.

The data loaded into this register is not used, however. Instead, the host
processor writes to the HSTDATA register in Figure 10-11 ¢, overwriting
its previous contents.

In response to the host’s write to HSTDATA, the TMS34010 automat-
ically initiates a write cycle to transfer the contents of HSTDATA to the
local memory address NV as shown in d.

Following the write, the TMS34010 automatically increments the ad-
dress in HSTADRL and HSTADRH to point to the next word, as shown
in e. At this point the host interface registers are ready for the host pro-
cessor to write the next word to HSTDATA.

The process shown in ¢ through e repeats for every word written to
TMS34010 local memory.

Host Interface Bus - Reads and Writes

(2)

(b)

(c)

(@)

Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
A]
STDATA
Host Host Local
Prooessor interface Memory
Registers
HSTADRH HSTADRL
[T— 8|
A
HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
[mm—— —
\ HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
—§ — 5
HSTDATA e
Host Host Local
Processor interface Memory
Registers
HSTADRH, HETADRL
HSTDATA

N+16
N

N+16
N

N+16

N+16

N+16
N

0

Figure 10-11. Host Indirect Write to Local Memory (INCW=1)

10-15

Host interface Bus - Reads and Writes

70.3.3.3 Combining Indirect Reads and Writes

10-16

If the HSTDATA register in Figure 10-11 is read by the host processor fol-

lowing step e, the value returned is the value that the host previously loaded
into the register. The host must read HSTDATA a second time to access data
from TMS34010 local memory. This principle is illustrated in Figure 10-12,
which shows how the host interface performs when a write is followed by two

reads. For this example, INCW=1 and INCR=0.

® In Figure 10-12 a, HSTADRL and HSTADRH together point to location
N in the TMS34010’s local memory. The host processor is shown writ-

ing to HSTDATA.

In b, the data buffered in HSTDATA is written to location NV in memory.

[] The address registers are incremented in c.

® In d, the host processor reads the HSTDATA register, which returns the

value that the host loaded into the register in step a.

L] Reading HSTDATA causes a memory read cycle to take place in e, which

loads the value from memory address N+16 into HSTDATA.

° In £, a second read of HSTDATA by the host processor returns the value

from memory address N+16.

Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
@ [m—— ——
\ HSTDATA
Host Host Local
Processor Interface Memory
Registers
HSTADRH HSTADRL
[— B |
() N
HSTDATA

N+16
N

N+18

0

Figure 10-12. Indirect Write Followed by Two Indirect Reads
(INCW=1, INCR=0)

Host Interface Bus - Reads and Writes

(c)

(d

(e)

(1]

Host Host Local
Processor Interface Memory
Reglsters
HSTADRH, HSTADRL
|———¥ " B N+16
[N
HSTDATA
]
Host Host Local
Processor interface Memory
Registers
HSTADRH HSTADRL
N+1 B N+16
[N
\ HETDATA
0
Host Host Local
Processor Interface Memory
Registers
HSTADRH, HSTADRL
(- B |N+t8
C N
HSTDATA
B]
0
Host Host Local
Prooessor Interface Memory
Registers
HSTADRH, HSTADRL
C_NsE ——
C N
\ HSTDATA
]

Figure 10-12. Indirect Write Followed by Two Indirect Reads (INCW=1,
INCR=0) (Concluded)

10-17

Host interface Bus - Reads and Writes

10.3.3.4 Accessing Host Data and Address Registers

When the TMS34010 internal processor accesses the HSTDATA, HSTADRL,
or HSTADRH register, no subsequent cycle occurs to transfer data between
HSTDATA and local memory. Also, the address in HSTADRL and HSTADRH
is not incremented, regardless of the state of the INCR and INCW bits.

The host processor can indirectly access any register in the TMS34010’s in-
ternal 1/0 register file by first loading HSTADRL and HSTADRH with the ad-
dress of the register, and they writing to or reading from HSTDATA.

No hardware mechanism is provided to prevent simultaneous accesses of the
HSTDATA, HSTADRL and HSTADRH registers by the host processor and by
the TMS34010 internal processor. Software must be written to avoid simul-
taneous accesses, which can result in invalid data being read from or written
to these registers.

710.3.3.5 Downloading New Code

10-18

The TMS34010 host interface provides a means of efficiently downloading
new code from a host processor to TMS34010 local memory. The host initi-
ates this operation through the following process:

L Before downloading, the host interrupts and halts the TMS34010 by
writing 1s to the HLT and NMI bits in the HSTCTL register. The host
processor should then wait for a period of time equal to the TMS34010
interrupt latency. (TMS34010 hardware resets the NMI bit if the non-
maskable interrupt is initiated before the halt occurs.)

L] The code is then downloaded using the auto-increment features of the
host interface registers.

® After downloading the code, the host should flush the cache as de-
scribed in Section 5.4.5, Flushing the Cache (page 5-23).

e The nonmaskable interrupt vector is written through the host port to lo-
cation FFFFFEEOh so that the new code begins execution at the vec-
tored address.

® The NMI bit in the HSTCTL register should be set to 1 to initiate a non-
maskable interrupt. At the same time, the NMIM bit in the HSTCTL re-
gister should be set to 1. If the host does not need the current context
to be stored on the stack, or if the nonmaskable interrupt was taken in
the first step, the NMIM bit should be set to 1. Otherwise, NMIM should
be set to 0.

{ The host restarts the TMS34010 by writing a O to the HLT bit in the
HSTCTL register.

Setting the HLT and NMI bits to 1 simultaneously reduces the worst-case
delay (compared to setting HLT only). NMI latency is the delay from the O-
to-1 transition of the NMI bit and the start of execution of the first instruction
of the NMI service routine. Halt latency is the delay from the 0-to-1 transition
of the HLT bit and the time at which the TMS34010 actually halts (see Sec-
tion 10.3.4). The maximum NMI latency may be much less than the halt la-

Host Interface Bus - Reads and Writes

tency if a PIXBLT, FiLL, or LINE instruction is in progress at the time of the
NMI or halt request. An NMI request interrupts instruction execution at the
next interruptible point, but a halt request is ignored until the executing in-
struction completes or is interrupted. When NMI and HLT are set to 1 simul-
taneously, the TMS34010 halts before beginning execution of the first
instruction in the NM! service routine. Therefore, the delay from the setting
the NMI and HLT bits to the time that the TMS34010 actually halts is simply
the NMI latency.

10.3.4 Halt Latency

The TMS34010 may be halted by a host processor via the HLT bit in the
HSTCTL register. The delay from the receipt of a halt request to the time that
the TMS34010 actually halts is the sum of five potential sources of delay:

1) Halt request recognition
2) Screen-refresh cycle

3) DRAM-refresh cycle

4) Host-indirect cycle

5) Instruction completion

In the best case, items 2 through 5 cause no delay. The minimum delay to due
to item 1 is one machine state.

(] The halt request recognition delay is the time required for the setting
of the HLT bit to be internally synchronized after the low-to-high transi-
tion of the HRDY pin.

® The screen-refresh and DRAM-refresh cycles are a potential source
of delay, but in fact occur rarely and are unlikely to delay a halt.

e The likelihood of a delay caused by a host-indirect cycle is small in
most instances, but this depends largely on the application. It would
only occur if the host had written to the data register just prior to writing
to the HLT bit. The delay due to a single host-indirect cycle is two ma-
chine states, assuming no wait states.

® The instruction completion time refers to the time required for an in-
struction that was already executing at the time the halt request was re-
ceived to complete. Note that the TMS34010 halt condition is entered
only on instruction boundaries. This means that a PIXBLT, FILL, or
LINE instruction that is already in progress runs to completion before the
TMS34010 halts.

Table 10-2 shows the minimum and maximum times for each of the five op-
erations listed. The halt latency is calculated as the sum of the numbers in the
five rows. In the best case, the halt latency is only one machine state. The
worst-case latency is six machine states plus the delays due to host-indirect
cycles and instruction completion. Table 10-3 shows instruction completion
times for some of the longer instructions. However, a PIXBLT, FILL, or LINE
instruction may take longer than the times shown in Table 10-3, depending
on the size of the pixel array or line specified. Table 10-3 also shows the in-
struction completion time for a JRUC instruction that jumps to itself - the
TMS34010 may be executing this instruction if the software is simply waiting
for a halt.

10-19

Host Interface Bus - Reads and Writes

Table 10-2. Five Sources of Halt Delay

L I
Operation at.ency (In States)
Min Max
Halt recognition 1 2
Instruction completion 0 See Table 10-3
DRAM-refresh cycle 0 2
See Note 2
Screen-refresh cycle 0 2
See Note 2
Host-indirect cycle 0 See Note 1

Notes: 1) The latency due to host-indirect cycles depends
on both the hardware system and the application.
The delay due to a single host-indirect cycle is two
machine states, assuming no wait states.
2) DRAM-refresh and screen-refresh cycle times as-
sume no wait states.

Table 10-3. Sample Instruction Completion Times

Instruction

Worst-Case Instruction
Completion Time (In States)

SP Aligned SP Not Aligned
DIVS A0,A2 43 43
MMFM SPALL 72 144
MMTM SPALL 73 169
PIXBLT, FILL, and LINE See Note 1 See Note 1

Wait: JRUC wait

1

1

Notes:

1) The worst-case instruction completion time is equal to the in-

struction execution time less one machine state.

2) The SP-aligned case assumes that the SP is aligned to a word
boundary in memory.

10.3.56 Accommodating Host Byte-Addressing Conventions

10-20

Processor architectures differ in the manner in which they assign addresses to
bytes. The TMS34010 host interface logic can be programmed to accommo-
date the particular byte-addressing conventions used by a host processor.

This ability is important in ensuring software compatibility between 8- and
16-bit versions of the same processor, such as the 8088 and 8086 or the
68008 and 68000. The 8088 transfers a 16-bit word as a series of two 8-bit
bytes, low byte first, high byte second. The 68008 transfers the high byte first,
and low byte second.

The HSTCTL register's LBL bit is used to configure the TMS34010 host in-
terface to accommodate different byte-accessing methods. The host interface
is configured to operate according to the following two principles:

Host Interface Bus - Reads and Writes

1)

First, when a host processor with an 8-bit data bus reads from or writes
to the HSTDATA register, it accesses the high and low bytes of the reg-
ister in separate cycles. The TMS34010 does not initiate its local mem-
ory access until both bytes of HSTDATA have been accessed.

2) Second, when HSTADRH and HSTADRL are loaded by the host, the
TMS34010 must not initiate its read of the local memory until the com-
plete pointer address has been ioaded into HSTADRL and HSTADRH.

When LBL=0:

® A local memory read cycle is intitiated by the TMS34010 when the host
processor reads the high byte of HSTDATA, or writes to the high byte
of HSTADRH.

° A local memory write cycle is initiated by the TMS34010 when the host
processor writes to the high byte of HSTDATA.

When LBL=1:

° A local memory read cycle is initiated by the TMS34010 when the host
processor reads the low byte of HSTDATA, or writes to the low byte of
HSTADRL.

e A local memory write cycle is initiated by the TMS34010 when the host

processor writes to the low byte of HSTDATA.

When the host processor is an 8088, for example, the TMS34010 is typically
configured by setting the LBL bit of the HSTCTL register to 0. When config-
ured in this manner, the TMS34010 expects the HSTADRL register to be
loaded first, and HSTADRH loaded second. Furthermore, the high byte of the
HSTADRH register is expected to be loaded after the low byte. When LBL is
set to 0, a local read cycle is initiated when the upper byte of the HSTADRH
register is written to by the host processor. This permits the lower byte of
HSTADRH to be loaded first without causing side effects.

10-21

Host Interface Bus - Bandwidth

10.4 Bandwidth

10-22

One measure of the performance of the host interface is its data rate, or
bandwidth. The bandwidth is the number of bits per second that can be
transferred through the host interface during a block transfer of data to or from
TMS34010 memory. Assume that the host interface address register is pro-
grammed to autoincrement. The maximum data rate through the host interface
can be expected to approach the bandwidth of the TMS34010’s memory. For
example, assume a 50-MHz TMS34010 and a memory requiring no wait
states. The memory cycle time is about 320 nanoseconds (bandwidth = 50
megabits/second). The host’s access cycle time at the host interface is so-
mewhat longer than this due to certain additional delays inherent in the oper-
ation of the TMS34010’s internal host interface logic. Also, the throughput
of the host interface may depend on whether or not the TMS34010 is halted.

The bandwidth is calculated as the width of the host data path (16 bits) times
the frequency of access cycles through the host interface. Given a continuous
series of word accesses, with successive accesses occurring at regular inter-
vals, what is the minimum interval between host accesses that the interface
can sustain without having to send not-ready signals to the host? (The
TMS34010 drives its HRDY output low temporarily to inform the host when
the TMS34010 is not yet ready to complete the host’s current access.)

First, when the TMS34010 is halted, the host interface should support con-
tinuous accesses occurring at regular intervals no less than about 400 nano-
seconds apart. As long as the host attempts to maintain a throughput no
greater than this limit, delays due to not-ready signals occur rarely, if at all.
The bandwidth for this case is calculated in Table 10-4 a as approximately 40
megabits per second. This value can be expected to vary slightly with sys-
tem-dependent conditions such as the frequency of DRAM-refresh and
screen-refresh cycles.

When the TMS34010 is running, the host interface should support continuous
accesses occurring at regular intervals no less than approximately 550 nano-
seconds. The bandwidth for this case is calculated in Table 10-4 as approxi-
mately 29 megabits per second. This value varies slightly with conditions such
as the frequency of DRAM-refresh and screen-refresh cycles, and also with the
characteristics of the program being executed by the TMS34010.

Table 10-4. Host Interface Estimated Bandwidth

Assumptions Approximate Throughput
TMS34010 halted 16 bits/transfer i
50-MHz TMS34010 ————— = 40 megabits/s
No wait states 400 ns/transfer
TMS34010 running 16 bits/transfer .
50-MHz TMS34010 = = 29 megabits/s

550 ns/transfer

No wait states

Host Interface Bus - Worst-Case Delay

10.5 Worst-Case Delay

In some applications, designers must determine not only the effective
throughput of the host interface, but also the delays that can occur under
worst-case conditions. These conditions occur too rarely to affect overall
throughput, but the important consideration here is not how often they occur,
but that they can occur at all. First, with the TMS34010 halted, the worst
delay is given by the formula (6 + 2N)T, where N is the number of wait states
per TMS34010 memory cycle, and T is the local clock period (nominally 160
nanoseconds for a 50-MHz TMS34010). Second, with the TMS34010 run-
ning, the worst delay is given by the formula (9 + 4N)7. The derivation of
these formulas, summarized in Figure 10-13, may be helpful in illustrating the
mechanisms of the host interface.

27 Synchronization delay
(2 + V)T Screen-refresh cycle
+(2+N)T DRAM-refresh cycle
(6 + 2NM)T Worst-case delay (total)
(a) Worst-Case Delay with TMS34010 Halted
27 Synchronization delay
1 +MT TMS34010 CPU read
2+N)T TMS34010 CPU write
2+NT Screen-refresh cycle
+(2+N)T DRAM-refresh cycle
(9 +4N)T Worst-case delay (total)
(b) Worst-Case Delay with TMS34010 Running
N = Number of wait states per memory cycle
T = Local clock period (nominal 160 nanoseconds for 50-MHz device)

Note: These are worst-case delays and have negligible effect on performance. The case
shown in a, for example, could be expected to occur less than once per thousand
(0.1 percent of) host accesses in a typical system.

Figure 10-13. Calculation of Worst-Case Host Interface Delay

Consider case a, in which the TMS34010 is halted, first; the worst-case delay
is calculated as the sum of the three delays. The first of these delays is the time
required to internally synchronize the host interface cycle to the TMS34010
local clock. The host's signals are generally not synchronous to the
TMS34010 local clocks. A signal from the host must therefore be passed
through a synchronizer latch (part of the TMS34010 on-chip host interface
logic) before being used by the TMS34010. The delay through the syn-
chronizer is from one to two local clock periods (17 to 2T), depending on the
phase of the host clock relative to the TMS34010’s local clock. The second
and third delays in Figure 10-13 represent the time needed to perform a
screen-refresh cycle followed by a DRAM-refresh cycle. The arbitration logic
internal to the TMS34010 assigns these two types of cycles higher priorities
than host-requested indirect accesses. (Screen refresh has a higher priority
than DRAM refresh.) Thus, a host access requested at the same time as one
of these cycles must wait. The worst-case assumption is that a screen-refresh
cycle is generated internal to the TMS34010 on the same clock edge at which
the request for the host access arrives. Furthermore, a DRAM-refresh cycle is

10-23

Host Interface Bus - Worst-Case Delay

10-24

requested during this same clock edge or during the next 1 + N clock edges.
An equivalent delay occurs in the case in which a DRAM refresh and host
access are requested on the same clock edge (the DRAM refresh wins), and
a screen refresh is requested on a later clock edge before the host access can
begin. This case is not shown in Figure 10-13, but the delay in this instance
is also (6 + 2N)T. In a typical system, DRAM-refresh cycles consume about
2 percent of the available memory bandwidth, and screen-refresh cycles take
about 1.5 percent (using VRAMs). The probability of either sequence of
events is therefore very small (less than one in a thousand, assuming N = O;
that is, no wait states), and the performance degradation due to these unlikely
events is negligible.

Now consider the case in which the TMS34010 is running. Host accesses are
of higher priority than TMS34010 instruction fetches and data accesses, but
still of lower priority than DRAM-refresh or screen-refresh cycles. The worst-
case delay is calculated as the sum of the five delays indicated in Figure 10-13
b. This assumes that the TMS34010 begins a read-modify-write operation
on a memory word (this is performed as a read cycle followed by a separate
write cycle) just one clock before the TMS34010 receives the host access re-
quest. The TMS34010 CPU read cycle is actually (2 + N)T in duration, but
since it begins one clock before the host access is requested, only (1 + N)T
is left in the cycle. The TMS34010’s local memory controller treats a read-
modify-write operation as indivisible; once the read has started, no other re-
quest can be granted until the write completes. The write cycle is (2 + N)T
in duration. Again, assume that sometime before the write cycle does com-
plete, screen-refresh and DRAM-refresh cycles are also requested. The prob-
ability of this case is somewhat more difficuit to calculate than that of Figure
10-13 a, since the frequency of read-modify-write operations is very program
dependent. This sequence of events rarely occurs, however.

Section 11

Local Memory Interface

The TMS34010 local memory interface consists of a triple-multiplexed
address/data bus and associated control signals. Several types of memory
cycles, including read, write, screen-refresh, and DRAM-refresh cycles are
supported. During a memory cycle, the row address, column address, and data
are transmitted over the same physical bus lines. The row and column ad-
dresses necessary to address DRAMs and VRAMs are available directly at the
address/ data pins, eliminating the need for external multiplexing hardware.

The TMS34010 interfaces directly to DRAMs (such as the TMS4256 and
TMS4C1024) and VRAMs (such as the TMS4461), and can be programmed
to perform DRAM-refresh cycles at regular intervals. CAS-before-RAS or
RAS-only refresh cycles may be selected. The TMS34010 can also be pro-
grammed to perform screen refresh by scheduling VRAM register-transfer cy-
cles to occur at regular intervals.

The local memory interface provides a hold/hold acknowledge capability that
allows external devices to request control of the bus. After acknowledging a
hold request, the TMS34010 releases the bus by driving its address/data bus
and control outputs into high impedance.

Section Page
11.1 Local Memory Interface Pinscccoceeiiicriiieseeeccecreee e 11-2

11.2 Local Memory Interface Registers ... 11-3
11.3 Memory Bus Request Priorities 11-4
11.4 Local Memory Interface Timing 11-5

11.5 Addressing Mechanismscccocrimiiiinininece s 11-23

Local Memory Interface Bus - Local Memory Interface Pins

11.1 Local Memory Interface Pins

Section 2 describes TMS34010 pin functions in detail. This section briefly
summarizes the local memory interface pins.

LADO-LAD15

DEN

DDOUT

(2]
g 2
wn

3
2
o

LRDY
INCLK
LCLK1,
LCLK2

oy
2
purt
=

[
2
-
N

These pins form the local multiplexed address/data bus.

The local data enable signal is driven active low to allow data to
be written to or read from LADO-LAD15. (Connects to the G pins
of a pair of optional '245-type octal bus transceivers.)

The local data direction out signal is driven high to enable data to
be output on LADO-LAD15. It is driven low to enable data to be
input on LADO-LAD15. (Connects to the DIR pins of a pair of
optional '245-type octal bus transceivers.)

The high-to-low transition of the local address latched signal is
used by an external ‘373-type latch to capture the column address
from LADO-LAD15.

The local row address strobe signal drives the RAS inputs of
DRAMs and VRAMs.

The local column address strobe signal drives the CAS inputs of
DRAMs and VRAMs.

The local write strobe signal drives the W inputs of DRAMs and
VRAMs.

The local register transfer/output enable signal connects to the
TR/QE (or DT/OE) pins of a VRAM.

The local ready signal is driven low by external circuitry to inhibit
the TMS34010 from completing a local memory cycle.

TMS34010 processor functions are synchronous to this input
clock signal. (Video timing is controlled by VCLK.)

These output clocks are available to the board designer for syn-
chronous control of external circuitry.

Interrupt requests are transmitted to the TMS34010 on these pins.

Local Memory Interface Bus - Local Memory Interface Registers

11.2 Local Memory Interface Registers

The local memory interface registers are summarized below. These registers
are a subset of the 1/0 registers which are detailed in Section 6.

The memory CONTROL register contains several programmable param-
eters that provide control of the local memory interface:

- RM (DRAM refresh mode, bit 2): Selects RAS-only or

CAS-before-RAS refresh cycles.

— RR (DRAM refresh rate, bits 3 and 4): Controls the frequency of
DRAM refresh cycles.

- T (transparency enable, bit 5): Enables or disables the pixel attri-
bute of transparency.

- W (window violation detection mode, bits 6 and 7): Selects the
course of action the TMS34010 follows when it detects a window
violation.

- PBH (PIXBLT horizontal direction, bit 8): Determines the hori-
zontal direction (increasing X or decreasing X) for pixel operations.

- PBYV (PIXBLT vertical direction, bit 9): Determines the vertical di-
rection (increasing Y or decreasing Y) for pixel operations.

- PPOP (pixel processing operation select, bits 10-14): Selects
among several Boolean and arithmetic pixel processing options.

— CD (instruction cache disable, bit 15): Enables or disables the in-
struction cache.

The CONVDP register contains the destination pitch conversion factor
that is used during XY-to-linear conversion of a destination pixel ad-
dress.

The CONVSP register contains the source pitch conversion factor that
is used during XY-to-linear conversion of a source pixel address.

The PMASK (plane mask) register selectively disables or enables vari-
ous planes in a multiple-bit-per-pixel bit map display.

The PSIZE (pixel size) register specifies the number of bits per pixel.
The REFCNT (refresh count) register generates the addresses output

during DRAM-refresh cycles and counts the intervals between succes-
sive DRAM-refresh cycles.

Local Memory Interface Bus - Memory Bus Request Priorities

- 11.3 Memory Bus Request Priorities

The TMS34010’s local memory interface controller assigns priorities to re-
quests from various sources, both on and off chip, for local memory cycles.
Table 11-1 lists these priorities (priority 1 is highest).

Table 11-1. Priorities for Memory Cycle Requests

Priority Memory Cycle Requested
1 Hold request from external bus master device
2 Screen-refresh cycle
3 DRAM-refresh cycle
4 Host-initiated indirect read or write cycle
5 TMS34010 CPU memory cycle

A TMS34010 CPU memory cycle is a read or write performed by the
TMS34010's on-chip 32-bit processor. Insertion of a field (or a portion of a
field spanning multiple words) into a word requires two CPU memory cycles
when the field does not begin and end on word boundaries. The two cycles
are a read followed by a write. This sequence is called a read-modify-write
operation. The read and write are performed as separate memory cycles, but
are treated as indivisible; that is, the memory controller does not permit another
memory request to be serviced between the read and its accompanying write.
The only exception to this statement is the hold request. If a read-modify-
write is interrupted by a hold, the entire read-modify-write operation is re-
started after the hold is released.

While a read-modify-write operation on an individual memory word is indi-
visible, the accesses necessary to extract or insert a field spanning multiple
memory words are not. For example, if a field spans portions of two memory
words, a higher priority access such as a host-indirect cycle can occur be-
tween the two read-modify-write operations required to insert the field.

The hold request has the highest priority. An external device requests control
of the bus by signalling a hold request to the TMS34010. The externai device
may perform multiple memory cycles following acknowledgment from the
TMS34010. However, the device should not control the bus for so long that
necessary screen-refresh and DRAM-refresh cycles are prevented from occur-
ring. Indirect accesses initiated by a host processor are blocked as long as the
external device continues to control the bus. If the host processor attempts
to initiate another indirect access during this time, the host is forced to wait
at the host interface (the TMS34010 sends it a not-ready signal) until the
external device releases the local bus.

A memory cycle already in progress is always permitted to complete, even if a
higher priority request is received while the cycle is still in progress.

Local Memory Interface Bus - Local Memory Interface Timing

11.4 Local Memory Interface Timing

The TMS34010 memory interface contains a triple-multiplexed address/data
bus on which row addresses, column addresses and data are transmitted.
Figure 11-1 illustrates multiplexing of addresses and data.

GeP Ae?d?:'ss b Data
RF 1AQ 15
26 TR 14
25 29 13

Bit 31 Bto BIit15 Bit 0
(MsB) (LsB) (MsB) (LSB)
RF = DRAM-Refresh bus status bit

IAQ = Instruction acquisition bus status bit

TR = VRAM 8hift-Register-Transfer bus status blit

Figure 11-1. Triple Multiplexing of Addresses and Data

The TMS34010 LAD pins directly provide the multiplexed row and column
addresses needed to drive dynamic RAMs (like the TMS4256) and video
RAMs (such as the TMS4461). Any eight adjacent pins in the range
LADO-LAD10 provide 16 contiguous logical address bits; the eight MSBs are
output as part of the row address, and the eight LSBs are output as part of the
column address. For example, Figure 11-1 shows that logical address bits
5-20 are output at LAD1-LADS.

The control signals output to memory support direct interfacing to DRAMs
and VRAMs. At the beginning of a memory cycle, the address is output in
multiplexed fashion as a row address followed by a column address. The re-
mainder of the cycle is used to transfer data between the TMS34010 and
memory. Figure 11-2 (page 11-6) illustrates general timing (the local
address/data pins are identified as the LAD Bus)

11-56

Local Memory Interface Bus - Local Memory Interface Timing

CAS \ ’

Figure 11-2. Row and Column Address Phases of Memory Cycle

Figure 11-3 through Figure 11-8 show functional timing of the local memory
interface. Several timing features are common to the memory read and write
cycles in Figure 11-3 and Figure 11-4, and to the register-transfer cycles in
Figure 11-6 and Figure 11-7. A row address is output on LADO-LAD15 at the
start of the cycle, and is valid before and after RAS falls. A column address is
then output on LADO-LAD15. The column address is valid briefly before and
after the falling edge of TAL, but is not valid at the falling edge of CAS. The
column address is clocked into an external transparent latch (such as a
74AS373 octal latch) on the falling edge of TAL to provide the hold time on
the column address required for DRAMs and VRAMs. A transparent latch is
required so that the row address is available at the outputs of the latch during
the start of the cycle.

Local Memory Interface Bus - Local Memory Interface Timing

11.4.1 Local Memory Write Cycle Timing

Figure 11-3 illustrates a memory write cycle. Data are output on
LADO-LAD15 following the latching of the column address. DEN goes active
low at the same time the data become valid, and remains low as long as the
data remain valid. In a large system that requires buffering of the data bus to
memory, DEN is typically used as the enable signal to an external bidirectional
buffer (such as a 74AS245 octal buffer). DDOUT is used as the direction
control signal to the buffer. The write strobe, W, goes active low after the data
have become valid and CAS is low. This is interpreted as a “late write” cycle
by the DRAMs and VRAMs, which are prevented by the inactive-high TR/QE
signal from enabling their read drivers. Because the data are valid on both
sides of the W write strobe, external devices can latch the data on either the
high-to-low or low-to-high edge of W.

|01|02|03|Q4|Q1|02|03l04|01|
| |

LCLK1

LCLK2

SE

Data

1

1

| |
LRDY &

[
A
|'|| {El
= | |
LAL o 1N A
N S S I -
NERERCe s/
1 i L
WIiII;I|II:}l
!l!!E! ! | |'.1!
TRGE| | g | ¢ 1 | L Il
N N N A (O S A N
o | TN i/
A S I T T T I S
1 1L | L
boouT R
IR I .

Figure 11-3. Local Bus Write Cycle Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.2 Local Memory Read Cycle Timing

Figure 11-4 iliustrates a memory read cycle. LADO-LAD15 are forced to high
impedance following the latching of the column address. DEN and TR/QE both
go active low after CAS becomes low in order to enable read data from the
the output drivers of the DRAMSs and
VRAMs. DEN enables the external bidirectional buffers needed with memories
so large that external buffering (using a device such as a 74AS245 octal buf-
fer) of the data bus is required. The DDOUT signal serves as the direction
control for the external bidirectional buffers, and is low well in advance of the
high-to-low transition of DEN, and remains low well after the low-to-high
transition of DEN. The data that is read from memory must be valid during the
middle of the Q4 clock phase, as indicated in Figure 11-4. The low-to-high
transitions of TR/QE and DEN occur well in advance of the time at which the
LAD drivers turn on to output the row address of the next cycle. This prevents

memory to the LAD pins. TR/QE enables

bus conflicts.

|01|02|03|04|Q1]02|03[0I4|01!

LCLK1

(High)

i
H

N

XXX KX RXKXKXKKY
LAY X RRRIKRIRRKY

"V’V’V"""" “V’ v‘v.v‘v'v.v‘v‘v'v’v
RRRKRRRRRRRLRKS

@

Figure 11-4. Local Bus Read Cycle Timing

11-8

Local Memory Interface Bus - Local Memory Interface Timing

11.4.3 Local Register-to-Memory Cycle Timing

A register-to-memory cycle is a special type of cycle used in systems with
VRAMSs. The cycle transfers the contents of the VRAM's internal serial-data
register to a selected row of its internal memory array. The cycle typically af-
fects all VRAMs in the system. During the register-to-memory cycle shown
in Figure 11-5, both TR/QE and W are low during the fall of RAS. VRAMs re-
cognize this timing as the beginning of a register-to-memory cycle. Conven-
tional DRAMs may need to be de-selected (by withholding the row or column
address strobe, for example) to prevent them from interpreting the cycle as a
conventional read cycle. Alternately, the output enable signal required by a
DRAM such as the TMS4464 can be synthesized by connecting DEN and
DDOUT to the inputs of a two-input OR gate. (In fact, any pair of the signals
DEN, DDOUT, and TR/QE will work.) The low-to-high transition of TR/QE
occurs after the fall of CAS but prior to the rising edge of RAS. This timing
provides compatibility with a variety of VRAMSs.

The TMS34010 performs a register-to-memory cycle when writing to a pixel
while the DPYCTL register's SRT bit is set to 1. For example, the instruction
PIXT AO,*Al writes the pixel in AO to the address pointed to by A1. The
PSIZE register should contain the value 16 so that the write cycle is not pre-
ceded by a read cycle. When SRT is set to 1, this write is converted to the
register-to-memory cycle shown in Figure 11-5. The row address is selected
from bits 12-26 of A1, which are output on LADO-LAD14 during the cycle.

I01102l03:04:o1|02I03I04:01|
LCLK1 H— ' : |

']
)]
1 1
ez | L LN
| ‘
LADO-LAD15 X Row Undefined X
i

N

[l
[
1
1
1
1
[l
1
]
L
T
]
]
1
1
T
]
1
i
[

Local Memory Interface Bus - Local Memory Interface Timing

11.4.4 Local Memory-to-Register Cycle Timing

A memory-to-register cycle is a special type of cycle used in systems with
VRAMs. The cycle transfers the contents of a selected row of a video RAM's

memory array to its internal shift register.

VRAM memory-to-register cycles are primarily used to refresh the screen of a
CRT monitor. The cycles referred to elsewhere in this document as screen-
refresh cycles are in fact memory-to-register cycles. The TMS34010 also
performs a memory-to-register cycle when reading a pixel (for example, by
executing a PIXT *A0,Al instruction) while the SRT bit of the DPYCTL reg-

ister is set to 1.

During the memory-to-register cycle shown in Figure 11-6, TR/QE is low
during the fall of RAS, but W remains high. VRAMSs recognize this timing as
the beginning of a memory-to-register cycle, and their data outputs remain in
high impedance. Conventional DRAMs may need to be de-selected to prevent
them from interpreting the cycle as a memory read cycle. Alternately, the
output enable signal required by a DRAM such as the TMS4464 can be syn-
thesized by connecting DEN and DDOUT to the inputs of a two-input OR gate.
The low-to-high transition of TR/QE occurs after the fall of CAS but prior to the
rising edge of RAS. This timing provides compatibility with a variety of

VRAMs.

|01I02I03:04=Q1|02|03:04:O1|

Figure 11-6. Local Bus Memory-to-Register Cycle Timing

11-10

Local Memory Interface Bus - Local Memory Interface Timing

11.4.5 Local Memory RAS-Only DRAM Refresh Cycle Timing

During the RAS-only DRAM refresh cycle shown in Figure 11-7, RAS and TAL
are the only active control signals. All other signals, including CAS, W, and
TR/QE, remain inactive high through the cycle. The row address, output on the
LAD pins during the high-to-low transition of RAS, is generated by the
REFCNT (DRAM-refresh counter) register.

| Q1] 02| Q3 | Q4| Q1 Q2| Q3] Q4| Qi
et '

ST

3

o
&

{High)

8l =

3

g
o
ul

1
]
1
1
1
1
[
)
1
1
]
I
]
1
]
]
]
1
i
[
]
1
'
L
T
1
1
]
]

LRDY

Figure 11-7. Local Bus RAS-Only DRAM-Refresh Cycle Timing

11-11

Local Memory Interface Bus - Local Memory Interface Timing

11.4.6 Local Memory CAS-before-RAS DRAM Refresh Cycle Timing

11-12

During the CAS-before-RAS DRAM-refresh cycle shown in Figure 11-8, CAS
goes low before RAS goes low. Certain types of DRAMs (like the TMS4256
and TMS4C1024) and VRAMs (such as the TMS4461) recognize this as the
beginning of a DRAM-refresh cycle in which the address of the row to be re-
freshed is generated by a counter on the RAM chip itself, rather than by an
external device such as the TMS34010. The row address output by the
TMS34010 during the cycle is the same as would be output if the TMS34010
were configured to perform a RAS-only refresh cycle rather than a
CAS-before-RAS cycle. The address bits output on LADO-LAD15 remain sta-
ble from the start of the row address time (start of Q2) to the end of the col-
umn address time (end of Q4). LAD15, on which the RF bus status bit is
output, is low during the row address times. In contrast to other types of cy-
cles in which RAS goes low, the TAL output goes low at the start of Q3, after
the fall of CAS and before the fall of RAS. The timing of TAL is designed to
support the use of decode circuitry which latches the state of selected
address/data pins during the fall of TAL, and which recognizes a
CAS-before-RAS cycle by detecting a high level at the RAS output during the
fall of TAL.

lm 0203|04]01 Q2 03|04|n1 Q2
LCLK1

I I
Undefined X

LY
l
|

5
g
3
g

— L
H

— L

8

[(High) |

|
I
i " High) *
I

|
|
|
| A
|
|
|

_tt——t — 4+ —] —+ — 4— —

VAVAY AV AVATAY VAV AV A vavAvAvAvAv AT,
LRDY ;0‘0‘0’0‘0.0QO‘QMO‘O‘O‘Q’O’V

R T IRRLS
KRR L Care KRR KRR on Eoron0XCRXX

Figure 11-8. Local Bus CAS-before-RAS DRAM-Refresh Cycle
Timing

Local Memory Interface Bus - Local Memory Interface Timing

11.4.7 Local Memory Internal Cycles

When the TMS34010 is not performing one of the memory operations shown
in Figure 11-3 through Figure 11-8, its memory interface control signals re-
main inactive, as shown in Figure 11-9. This is called an internal cycle. Figure
11-9 shows two sequential internal cycles. During internal cycles, the LRDY
input is ignored.

|o1102|03:o4| o1|oz|oa=o4=o1|

LCLK1 | o | i I

]

[]

]
tewkz | ! - oo ! l:' !

'

{
Undefined

M

1

411

CAS

=|

TR/QE

BEN |

DDOUT

“T-1"1T"1T T 71T 1
HERENEE

___[___ ___',__.;,__]
SN W S I S N —
S A

__T__+__L__L_______L_

———— -]

LRDY

Figure 11-9. Local Bus Internal Cycles Back to Back

11.4.8 1/0O Register Access Cycles

A special memory read or write cycle is performed when the TMS34010 ad-
dresses an on-chip |/0 register. During this cycle, the external RAS signal falls,
but the external CAS remains inactive high for the duration of the cycle. 1/0
register locations begin at address CO000000h, and all 32 bits of the 1/0 reg-
ister address are decoded internally. The two MSBs of the 32-bit logical ad-
dress are not output at the LADO-LAD15 pins.

Figure 11-10 shows an I/0 register read cycle and Figure 11-11 shows an 1/0
register write cycle. These cycles occur when one of the TMS34010’s on-chip
1/0 registers is accessed by the on-chip processor or by the host processor via
a host-indirect access. An address in the range CO000000h to CO0001FFh is
interpreted as an 1/0 register access by on-chip decode logic, and the read or
write cycle is modified as shown in Figure 11-10 or Figure 11-11. The two

11-13

Local Memory Interface Bus - Local Memory Interface Timing

MSBs of the internal address (bits 30 and 31) are available internally and are
included in the internal decoding operation.

An 1/0 register read or write cycle is always two clock periods in duration, and
LRDY is ignored. The only control outputs that are active low during the cycle
are RAS and LAL. The CAS, W, TR/QE, DEN and DDOUT outputs all remain in-
active high. The row and column addresses output at the LADO-LAD15 pins
are all 0s. All three bus status bits are inactive (RF is high, IAQ is low, and TR
is high). During the read cycle shown in Figure 11-10, the LADO-LAD15 pins
are driven to high impedance during the data phase of the cycle. During the
write cycle shown in Figure 11-11, the LADO-LAD15 pins contain the valid
data being written to the 1/0 register.

1@1/02/031Q410Q1,02) 03] 0401
Ltk f Y l/ N !
b

g
ig <
I -
L1
P
%‘" L
iae

A N Y I
——h | b

RAS | P L |1|:: :

ooy b e :

e |||
oy T TN LY
[T e A S O N I A
CASI g T 1 T DT
| | l|||||||l |
IR SN NN S S | | I j I |
W! | (High) | | Feero el
I i o T T T T O B
i | R R I J) B |
TRAGE| | (High) |, ; | | 1 1 |
I R A A I S N
BN T
I N A N I R O
| L Tl |
Dbout R
[I S O B

Figure 11-10. 1/0 Register Read Cycle Timing

11-14

Local Memory Interface Bus - Local Memory Interface Timing

Q1020304 ; Q1j0Q2]0Q
]

LCLK1

LCLK2

|

i
N

LADO-LAD1S

i

:

I}

e

8l

e e e

(Hllgh)

%

(High)

Rl

[ENUONNS I NPy G

(l-lllah)

——-—+-1--

o o B 1
e

T
I

2 g
-

SN U N VN I

_-.__.___+]

—
7

]
1T

HENNNIN.

Figure 11-11. /O Register Write Cycle Timing

11.4.9 Read-Modify-Write Operations

The TMS34010’s read-modify-write operation, which consists of separate
read and write cycles, is not the same as the read-modify-write cycle specified
for some DRAMs. As explained in Section 5, when inserting a field into me-
mory that is not aligned to 16-bit word boundaries, the TMS34010 memory
interface logic may be required to perform read-modify-write (RMW) oper-
ations on one or more words in memory. A RMW operation consists of the
following sequence of steps:

1) A word is read from memory.

2) The portion of that word corresponding to the field being inserted is
loaded with the new value.

3) The modified word is written back to memory.

The read cycle is as shown in Figure 11-4 (page 11-8), and the write cycle is
as shown in Figure 11-3 (page 11-7).

A local bus request (HOLD low) may cause the TMS34010 to release the bus
after the read cycle of a RMW operation has completed, but before the ac-
companying write cycle has begun. When the TMS34010 later regains control
of the bus, it performs both the read and the write cycles of the RMW opera-
tion. The RMW operation is performed only when it is the highest priority bus
operation pending. Any pending screen-refresh, DRAM-refresh, or host-
indirect cycle has higher priority, and is performed first.

11-15

Local Memory Interface Bus - Local Memory Interface Timing

11.4.10 Local Memory Wait States

The timing shown in Figure 11-3 through Figure 11-8 assumes that the LRDY
input remains high during the cycle. The LRDY pin is pulled low by slower
memories requiring a longer cycle time. The TMS34010 samples the LRDY
input at the end of Q1, as indicated in the figures. If LRDY is low, the
TMS34010 inserts an additional state, called a wait state, into the cycle.
Wait states continue to be inserted until LRDY is sampled at a high level. The
cycle then completes in the manner indicated in Figure 11-3 through Figure
11-8.

The LRDY input is ignored by the TMS34010 during internal cycles, as indi-
cated in Figure 11-9.

Figure 11-12 shows an example of a read cycle extended by one wait state.
The first time LRDY signal is sampled, a low level is detected by the
TMS34010, causing the cycle to be delayed by a wait state. When LRDY is
sampled again one local clock period later, a high level is detected, permitting

DDOUT remain low is extended by one state (one local bus clock period).

ro—Wuitsnte—ul

Q1 Q2| Q31 Q4] Q| Q2| Q3| Q4| Q1| Q2 | Q3 | Q4
“3'-'“_/ VAR |/ AN
I

|

|

LCLK2 / 1

|
1
I
|
] | N R S Ey |
LADOQ-LAD7 X_Row ol. H-Z Don’t Car Data
} AXXA
|
I
t
|
[

7

g

__7J___

: I A
LRDY Don’t Care | Don’t Care
|

Figure 11-12. Local Bus Read Cycle with One Wait State

Local Memory Interface Bus - Local Memory Interface Timing

Figure 11-13 is an example of a write cycle extended by one wait state. The
first time LRDY signal is sampled, a low level is detected by the TMS34010,
causing the cycle to be delayed by a wait state. When LRDY is sampled again
one local clock period later, a high level is detected, permitting the cycle to
complete. The time during which RAS, CAS, TAL, W and DEN remain low is
extended by one state.

'-— Wait State ——‘
a2z Q3

Qi Q21 a3 Q4 Qa1 Q4 a Q2 Q3 a4 Q1 Q2
ekt |/ N\
i
” |
LCLK2
i ! ! 1
LADO-LAD15 Row >@(Data X
T H T T
| | ! 1 |
I I | |
RAS : |
T
I
} e
A !
~
oA i
w
1
|
TR/GE THigh)
I
I |
[|
H H
=/ AN
|
P
DDOUT
| .
|
| H ! [
LRDY Don‘t Care Don’t Care

Figure 11-13. Local Bus Write Cycle with One Wait State

Figure 11-14 is an example of a register-to-memory cycle extended by one
wait state. The first time the LRDY signal is sampled, a low level is detected
by the TMS34010, causing the cycle to be delayed by a wait state. When
LRDY is sampled again one local clock period later, a high level is detected,
permitting the cycle to complete. The time during which RAS, CAS, and TAL
remain low is extended by one state. The W and TR/QE low times are not ex-
tended, however. Similarly, during a memory-to-register cycle, TR/QE is not
extended.

11-17

Local Memory Interface Bus - Local Memory Interface Timing

'g—th Snla—-1
Q1 Q2 | a3 : a4 | Q1 Q2 | a3 Q4 | Q1 Q: Q| Q4| a1 Q2

— i

LCLK1 N\ ' /
|
I
|

LCLK2 I //’
I
|

LADO-LAD15 Row Col. Undefined
T T T
1 | | | 1
| 1 |
RAS
AT \
CAS
w

TR/GE :\

"

b ———

LRDY Don‘t Care Don’t Care:

Figure 11-14. Local Bus Register-to-Memory Cycle with One Wait
State

11.4.11 Hold Interface Timing

11-18

The TMS34010 includes a hold interface through which external bus-master
devices can request control of the local memory bus. When the TMS34010
grants a hold request, it drives its local memory address/data bus and control
outputs to high impedance, and the requesting device becomes the new bus
master. When the requesting device no longer requires the bus, it removes its
hold request, and the TMS34010 again assumes control of the local bus.

Figure 11-15 shows the TMS34010 releasing control of the local bus in re-
sponse to a hold request. The TMS34010 samples the state of the HOLD input
at each LCLK2 rising edge (at the end of the Q1 phase of the clock). HOLD
is a synchronous input, and must not change during the time that the
TMS34010 samples it; refer to the TMS34070 Data Sheet for HOLD setup and
hold times. The state of the hold acknowledge signal (active or inactive) is
output on the HLDA/EMUA pin during the Q3 and Q4 clock phases (LCLK1
low). During the first (or leftmost) LCLK2 rising edge, the hold request is
inactive. Consequently, the hold acknowledge signal remains inactive during

Local Memory Interface Bus - Local Memory Interface Timing

the first LCLK1 low phase. By the second LCLK2 rising edge, the hold request
has been activated, and the TMS34010 responds by acknowledging the hold
request during the next LCLK1 low phase. The address/data lines and ma-
jority of the control lines are driven to high impedance at the start of the next
Q2 phase (LCLK2 rising edge). The DDOUT and DEN pins are driven to high
impedance a quarter clock later.

Figure 11-16 shows the TMS34010 resuming control of the local bus after
deactivation of the hold request. Again, the TMS34010 samples the state of
the HOLD input at each LCLK2 rising edge. During the first LCLK2 rising edge,
the hold request is still active, and the TMS34010 responds during the next
LCLK1 low phase with an active hold acknowledge signal. By the second
LCLK2 rising edge, the hold request has been removed. The TMS34010 re-
sponds by outputting an inactive hold acknowledge signal during the next
LCLK1 low phase. At the next LCLK2 rising edge, the TMS34010 begins to
drive its address/data pins and the majority of its control pins to logic-high or
logic-low levels. The DEN and DDOUT signals remain in high impedance for
one additionai quarter clock before they too begin to be driven.

lat {02)03 ias{a1{02]a3)as|ar|az|as]as
| | | |
LoLK1 f ! ! N\ |
| | |
| ! |
LeLk2 1 !
N I -
1 ' L . |
LADO-LAD15 Row Col. Data _7-——.%"..1_ ———
|
|
RAS 'T"‘ll'""zﬂ""
|
|
AL | —T——Tm11—~—
|
Al
CAS | —/; \—1-——1'-1-“-1-1 J—
I | 1 t
{ || | ! :]
|
w | _l—‘_/__}\——+——+ul-24___
|
| | 1 |
+ } 3 i
TRIGE { : : N L-—-+u|-zJ‘--—-
N Y S S E— | {
DEN | ! | _ —
. i \ ! \- Jl-m-z+
! ! | |
I I |
poout |]]
1 { | 1 *J'""IT——'
I L) L I

-5k

! i
| I
FISREMOR | | hee o/
o i
e]
Ack

Figure 11-15. TMS34010 Releases Control of Local Bus

In Figure 11-15, the first active-low pulse of the HLDA/EMUA output is an
early acknowledgment, and the bus is not released for another three quarters

11-19

Local Memory Interface Bus - Local Memory Interface Timing

11-20

of a clock. The early acknowledgment gives advance warning to the device
requesting the hold that the bus is about to be released by the TMS34010,
allowing the device time to prepare to become the new bus master. The
TMS34010 outputs the active hold acknowledge signal only when it is pre-
pared to release the bus within the next clock period. If the TMS34010 must
wait longer than this to release the bus, its hold acknowledgment is withheld
until it can release the bus.

For instance, if the LRDY signal in Figure 11-15 were low instead of high at
the second rising edge of LCLK2, the TMS34010 would be forced to wait, and
would therefore not acknowledge the hold request until later, when the not-
ready condition was removed. Also, if the hold request in Figure 11-15 was
asserted initially during the first LCLK2 rising edge rather than the second, the
TMS34010 would delay its hold acknowledgment until the second LCLK1 low
clock phase, knowing that the cycle in progress would not be completed until
the third Q2 phase in the diagram.

A hold request has a higher priority than any internally generated memory cy-
cle requests, including:

® Screen refresh

° DRAM refresh

® Indirect access by the host processor

® TMS34010 instruction fetch or data access

A hold request is delayed only to allow a memory cycle already in progress to
complete.

External devices can activate or deactivate the HOLD input during any clock
of an ongoing cycle, as long as the input is stable during the rising edge of
LCLK2. The HOLD input is synchronous and is required to meet specified
setup and hold times to ensure that the TMS34010 operates correctly. After
the TMS34010 grants the bus to an external device (via an active-low level
on the HLDA/EMUA output during the Q3 clock phase), it continues to ac-
knowledge the hold request during the Q3 phases of subsequent clock cycles.
The external device retains control of the bus until it deactivates its hold re-
quest.

External devices should avoid placing the TMS34010 in hold for long periods.
While the TMS34010 is in hold, it can perform neither screen-refresh nor
DRAM-refresh cycles. Furthermore, a host processor attempting to access the
TMS34010's local memory through the host interface registers while the
TMS34010 is in hold may receive a not-ready signal. When this occurs, the
host is forced to wait to complete its access until the TMS34010 leaves the
hold state. (Refer to Section 9.10.1.5, Scheduling Screen-Refresh Cycles, on
page 9-27 for more information.)

If a request for a DRAM-refresh or screen-refresh cycle is generated within the
TMS34010 while an external device controls the bus, the TMS34010 retains
the request and perform the DRAM-refresh or screen-refresh cycle after the
external device has returned control of the bus to the TMS34010. However,
if a requested DRAM-refresh cycle is prevented from occurring for so long that
a second DRAM-refresh cycle is requested before the first DRAM-refresh cy-
cle can occur, the first DRAM-refresh request is lost. Similarly, if a screen-
refresh request is prevented from occurring for so long that a second

Local Memory Interface Bus - Local Memory Interface Timing

screen-refresh cycle is requested before the first screen-refresh cycle can oc-
cur, the first screen-refresh request is lost.

The HLDA/EMUA output is multiplexed between the hold acknowledge
(HLDA) and emulate acknowledge (EMUR) signals. The HLDA signal is output
during the LCLK1 low phase, and the EMUA signal is output during the LCLK1
high phase.

)
H
0
w
3

LCLK1

R
)
N
8
R
e
N
8

|
|
i_____ _—

;

LCLK2

Y

|
|
| ! } l
R NN N0
| | ! | [| |
| | | | } -i | { l
L e e =111 | l
A I B g n
| |
T B e e e e e (R I BN
o I A T S O S
T A A s A T AN
| | | | | | | | | | |
= | | | 1 | | | | 4 4 4
R R et R A A e e |
o PR L L
[| |
| | | | | | | | |t
5 T S S R s S S
|
B N L e B A |
B 10400 00 0 e a0 0 et 00 0ttt et

.0.0&0.0&&&0&)&.0&.OAAQ.O.AQ.

|]
I [| | | | |
HOLD M’l Aofofofofofofofofo‘ Roq ‘o’ofofofofofofo’ CLRLLREILLRK
| |

'

Figure 11-16. TMS34010 Resumes Control of Local Bus

11-21

Local Memory Interface Bus - Local Memory Interface Timing

11.4.12 Local Bus Timing Following Reset

Figure 11-17 shows the timing of the local bus signals following reset. At the
end of reset, the TMS34010 automatically performs a series of eight RAS-only
refresh cycles, as required to initialize certain DRAMs (such as the TMS4256
and TMS4464) and VRAMs (such as the TMS4461) following power-up.
The asynchronous low-to-high transition of RESET is sampled at the second
high-to-low LCLK1 transition in Figure 11-17. In less than two local clock
periods following this LCLK1 transition, the first of the eight RAS-only cycles
begins, as shown at the right side of Figure 11-17.

Each of the eight RAS cycles following reset is two clock periods in duration,
but can be extended by a not-ready signal (LRDY low). The timing for each
cycle is identical to that of a RAS-only DRAM-refresh cycle, including the bus
status codes output during the row and column address times. The row ad-
dress for each of the eight RAS-only cycles is all Os.

RESET HIGH LEVEL FIRST OF 8 RAS-ONLY
1S LATCHED INTERNALLY _ Ta . / CYCLES BEGINS
: Q1 Q2 : Q3 04|I Q1 Q2 : Q3 | Q4 : Q1§ 02| Q3| Q4 I| a1l 02 03: Q4
| /TN [s N | | |
LCLK1 —/— : | : | : 1 / |
| i | i i I I T
I N ! | |
LCcLk2 | : | I \ | : \ 1 /_ :
| | | | | |] [
: ! | | | | I |
T LS RN T | T
RESET | | / i i | I i
1 1 | |] I I
]] T | |] P |
| | ! |] | [|
byl 1 | [[Lol -
Umoums1Hur——r-1——I——r—1——T——f—~r—1——T——r—$CEmN
[' | | ! Lol T
Loy 1 ! I ! I ! :
AAS | (HIGHI l i i i i l
] I ! | |] [| L
| | ! | i | I
{ | ! I [I Il !
TAr | (HIGHI | i i i i Lo I
I I : I | I [by
TAS, W, TRIGE. _| ' 1 ! ! ! L f
BEN, DDOUT + (HIGH} ! : . : N !

11-22

Figure 11-17. Local Bus Timing Following Reset

Local Memory Interface Bus - Addressing Mechanisms

11.5 Addressing Mechanisms

The TMS34010 addresses memory by means of a 32-bit logical address. As
explained in Section 3, each 32-bit logical address points to a bit in memory.

Logical address bits are numbered from O to 31, where bit 0 is the LSB and
bit 31 is the MSB. Figure 11-18 illustrates the manner in which address bits
4-29 are output to physical memory. Each column in the figure indicates an
address/data bus pin, LADO-LAD15, and below it is the corresponding bit of
the logical address output at the LAD pin during the fall of RAS and during the
fall of CAS. Bus status bits RF, TR, and IAQ are output on LAD14~-LAD15.

LAD Pin Numbers
15{14|13|12|11|10|9{8|7 |6 |5|4|3|2|(1|0

TMS34010| At Fall |RF|26]/25/24|23|22]/21]|20]{19]18{17|16{15|14[13]12
Logical of RAS

gdtd;ess At Fall [IAQTR|29(28[27|14|13[12]11]|10]{ 9|87 |6|5]| 4
its of CAS

T Bus status signals:
RF — DRAM refresh cycle
1AQ - Instruction acquisition cycle
TR - Register-transfer cycle

Figure 11-18. External Address Format

Key features of the local bus addressing mechanism include the following:

[The two MSBs of the 32-bit logical address (bits 30 and 31) are not
output.

[The four LSBs of the 32-bit logical address (bits O to 3) are not output,
but are used internally to designate a bit boundary within a 16-bit word
accessed in the external memory.

® The address bits output on LADO-LAD10 during the falling edges of RAS
and CAS are aligned so that 16 consecutive bits from the logical address
are available at any eight consecutive pins in the range LADO to LAD10.
The address bits are output in this way in order that the 8-bit row ad-
dress and 8-bit column address presented to the dynamic RAMs can al-
ways be taken from the same eight address/data pins. This eliminates
the need for external address multiplexers.

[] Logical address bits 12-14 are output twice during a memory cycle -
during both the RAS and CAS falling edges - but at different pins. This
allows a variety of memory organizations and decoding schemes to be
used.

Pins LADO-LAD10 form an 11-bit zone in which logical address bits 12-14
are overlapped (that is, they are issued in both cycles, but on different pins).
The row and column address bus is connected to any eight consecutive pins
within this zone. The actual position is determined by the bank-decoding
scheme selected for a particular memory organization.

11-23

Local Memory Interface Bus - Addressing Mechanisms

Output along with the address are three bus status signals:

® The RF (DRAM refresh) bit is output on LAD15 during the fall of RAS.
It is low if the cycle that is just beginning is a DRAM-refresh cycle (ei-
ther RAS-only or CAS-before-RAS); otherwise, RF is high.

® The TR (VRAM register transfer) bit is output on LAD14 during the fall
of CAS, and is low if the cycle in progress is a video RAM register
transfer. Otherwise, TR is high. In either event, the state of the TR bit
reflects the state of the TR/QE output during the falling edge of RAS
within the same cycle.

® The |AQ bit is output on LAD15 during the fall of CAS, and is high if the
cycle is an instruction fetch; otherwise, IAQ remains low. The term /n-
struction fetch includes not only reads of opcodes, but also immediate
data, immediate addresses, and so on.

IAQ is active high when words are fetched from memory to load the in-
struction cache. A cache subsegment (a block of four words) is loaded in a
series of read cycles, during which IAQ is active high. The PC points to an
instruction word within the block, but the block may contain data as well as
instruction words (opcodes, immediate addresses, immediate data, and so on).
Only during execution can the TMS34010 distinguish instruction words from
data words residing in the cache. Instruction words are fetched from the
cache as they are needed, but data inadvertently loaded into the cache is ig-
nored and all memory data reads or writes result in accesses of the memory
rather than the cache.

When the cache is disabled, 1AQ is active high only when the first word of an
instruction is fetched; in the case of a multiple-word instruction, |AQ is inac-
tive while the additional words are fetched.

11.5.1 Display Memory Hardware Requirements

11-24

The minimum number of bits of memory required to implement the display
memory is the product of the total number of pixels (on-screen and off-screen
areas combined) and the number of bits per pixel. The minimum number of
VRAMs required to contain the display memory is calculated as follows:

(pixels per line) x (lines per frame) x (bits per pixel)
Number of bits per VRAM

This caiculation yields the minimum number of VRAMs needed, but additional
VRAMs may be required in some applications. For instance, XY addressing
can be supported by making the number of pixels per line of the display me-
mory a power of two, but this may require more than the minimum number of
VRAMs needed to contain the display.

Number of VRAMs =

Local Memory Interface Bus - Addressing Mechanisms

11.56.2 Memory Organization and Bank Selecting

During a single local memory cycle, one data word (16 bits) is transferred
between the TMS34010 and the selected bank of memory. The memory is
partitioned into a number of banks, where each bank contains the number of
memory devices that can be accessed in a single memory cycle. The number
of devices per bank is therefore determined by dividing the width of the data
bus by the number of data pins per device. The TMS34010 data bus is 16 bits
wide, and can access 16 memory data pins during a single cycle. This means,
for example, that a bank composed of 64K-by-1 RAMs contains 16 RAM de-
vices. A bank composed of 64K-by-4 RAMs contains 4 RAM devices.

In a typical system, the local memory is divided into two parts, one consisting
of the display memory and the other consisting of additional DRAMs needed
to store programs and data. This additional RAM can be called the system
memory. A high-order address bit is typically used to select between the dis-
play memory and system memory. Within the display memory or system me-
mory, some address bits are provided as the row and column addresses to the
selected bank, while other address bits are used to select one of the banks.

The number of banks of VRAM needed for the display memory is calculated
by dividing the total number of VRAMSs by the number of VRAMs per bank.
This in turn determines how many bank select bits must be decoded.

11.5.3 Dynamic RAM Refresh Addresses

DRAMs (and VRAMSs) require periodic refreshing to retain their data. The
TMS34010 automatically generates DRAM-refresh cycles at regular intervals.
The interval between refresh cycles is programmable, and DRAM refreshing
can be disabled in systems that do not require it.

The TMS34010 can be configured to generate one of two types of DRAM-
refresh cycle timing:

® RAS-only (see Figure 11-7) or
® CAS-before-RAS (see Figure 11-8).

During a RAS-only refresh cycle, the TMS34010 provides the 8-bit row ad-
dress needed to refresh a particular row within each of the DRAMs in the
memory system. DRAMs that support CAS-before-RAS cycles each contain
an on-chip counter which generates the row address needed during the cycle.
In other words, these devices do not rely on the TMS34010 to provide the row
address during the CAS-before-RAS cycle.

The row address output by the TMS34010 dunng a DRAM-refresh cycle is the
same regardless of whether the TMS34010 is configured for RAS-only or
CAS-before-RAS refresh timing. Since the TMS34010 outputs a valid row
address during a CAS-before-RAS cycle, a system can contain some DRAMs
that use CAS-before-RAS refresh timing and others that use RAS-only timing.
This hybrid approach configures the TMS34010 to perform CAS-before-RAS
refresh, and relies on external decode logic to prevent the active-low column
address strobe from reaching those DRAMs that require RAS-only refreshing.
The decode logic detects the fact that CAS falls before RAS during a CAS-be-
fore-RAS cycle, and uses this to inhibit transmitting the CAS signal to the
RAS-only DRAMSs.

11-25

Local Memory Interface Bus - Addressing Mechanisms

11-26

Several bits in the CONTROL register determine the manner in which the
TMS34010 performs DRAM refreshing. The RM bit selects the type of
DRAM-refresh cycle:

[J RM=0 selects RAS-only cycles
{ RM=1 selects CAS-before-RAS cycles

The RR bits determine the interval between DRAM-refresh cycles:

® RR=00, selects refreshing every 32 local clock periods.
[] RR=01, selects refreshing every 64 local clock periods.
(] RR=10 is a reserved code.

(RR=115 inhibits DRAM refreshing.

At reset, internal logic forces the RM bit to O and the RR field to 003. While
the RESET signal to the TMS34010 is active, no DRAM-refresh cycles are
performed. Following reset, the TMS34010 begins to automatically perform
DRAM-refresh cycles at regular intervais.

Both the interval between DRAM-refresh cycles and the addresses output
during the cycles are generated within the REFCNT (DRAM-refresh count)
register. Bits 2-15 of REFCNT form a continuous binary counter. The RINTVL
field occupies bits 2-7, and counts the length of the interval between succes-
sive internal requests for DRAM-refresh cycles. The eight MSBs of REFCNT
form the ROWADR field, containing the row address output to memory during
the DRAM-refresh cycle.

Local Memory Interface Bus - Addressing Mechanisms

GSP

i ey

LAD14[_] ROWADRE = REFCNT4
LAD13[] ROWADRE = REFCNT13
LAD12[_] ROWADR4 = REFCNT12, etc.
LAD11[_| ROWADR3
LAD10[_} ROWADR2
LAD® [] ROWADR1 Y
LAD8 [] ROWADRO
LAD7 [} ROWADR7

LADS [] ROWADR | FABBoCADE provide the
8-bit row address to a
LAD4 [| ROWADR4
LAD3 [| ROWADR3
LAD2 [] ROWADR2 J
LAD1 [| ROWADR1
LADO [} ROWADRO

Figure 11-19. Row Address for DRAM-Refresh Cycle

P
LADS [] ROWADRS [higok of DRAMs of VRAMS.

During a DRAM-refresh cycle, the 8-bit row address in the ROWADR field of
the REFCNT register is output on the LAD pins during the high-to-low tran-
sition of RAS. As shown in Figure 11-19, the eight bits of ROWADR are out-
put on LADO-LAD7. The seven LSBs of ROWADR are also output on
LAD8-LAD14. LAD15 transmits the RF bus status signal, fow during the fall

of RAS.

Assume that LAD2-LADS are used as the 8-bit row address by a bank of
DRAMs, as indicated in Figure 11-19. The address bits output on
LAD2-LLAD9 are the same eight bits output on LADO-LAD7, but in a different
order. During a series of 266 DRAM-refresh cycles, the row addresses output
on LADO-LAD7 and LAD2-LADS contain the same bits. Thus, if the ad-
dresses output on LADO-LAD7 cycle through all 256 row addresses then the
addresses output on LAD2-LADSY also cycle through all 256 row addresses,

but in a different order.

11-27

Local Memory Interface Bus - Addressing Mechanisms

11.6.4 An Example - Memory Organization and Decoding

As an example, consider a memory organization based on the address decod-
ing scheme shown in Figure 11-20. Three logical address bits (4, 21, and 26)
are used as bank-select bits. Logical address bits 5-12 are used as the 8-bit
column address, and bits 13-20 are used as the 8-bit row address. Referring
to Figure 11-18, the row and column addresses are multiplexed out on the
same eight pins, LAD1-LAD8. The total number of address bits used to ad-
dress external memory is 19, for a total address reach of one megabyte. The
remaining address bits output by the TMS34010 are not used for this example.

l,: 32-Bit Logical Address =||
31302082827 2625242322212019 18 17 16 6 4 13121110 0 8 7 6 5 4 3 2 1 0
[[1 [1 I [l]
\ \ / A\ ——r — /s v K S ——
Don't Don't 8-Bit Row 8-Bit Column Bit
Care Ceare Address Address Select
Bank Bank Bank
Select Select Select
Bit 2 Bit 1 Bit 0
(882) B8s1) (8S0)

11-28

Figure 11-20. Address Decode for Example System

Bank select bit 2 (BS2) in Figure 11-20 selects between the display memory
(BS2=0) and the system memory (BS2=1). System memory is a block of
conventional DRAM (such as the TMS4256 and TMS4C1024) used for pro-
gram and data storage. BS2 becomes valid before RAS fails, and thus can be
used to determine whether the row-address strobe is gated to the dispiay
memory or to the system memory. The average power dissipation is reduced
because only one or the other (the display memory or the system memory) is
enabled during a particular memory read or write cycle.

Figure 11-21 shows the structure of the display memory. Its dimensions are
1024 by 1024 at four bits per pixel. Bank select bit 1 (BS1) selects between
the top (BS1=0) and bottom (BS1=1) halves of the display memory. Since
BS1 becomes valid before the fall of RAS, it can be used to gate RAS to either
the upper or lower half of the display memory during a memory read or write
cycle. By transmitting the row address strobe to only half of the display me-
mory, the power dissipation for the cycle is significantly reduced.

Bank select bit 0 (BSO) selects between the even word and odd word of each
pair of adjacent words in the display memory. Each word contains four adja-
cent pixels. Odd and even words are stored in two separate banks of VRAMSs,
and the decode logic gates the column address strobe to the selected bank
only. The row address strobe is gated to both banks (odd and even words).
This increases the power dissipation over that required if only one bank were
active. A compensating benefit of this organization, however, is that it reduces
the rate at which each VRAM must supply serial data to refresh the screen.
During screen refresh, the bank containing the even words and the bank con-
taining the odd words alternately provide data to the video monitor. Alter-
nating between the two banks in this fashion reduces the data bandwidth

Local Memory Interface Bus - Addressing Mechanisms

requirements of each bank to about 10 MHz, which is an eighth of the video
bandwidth.

Even Word Odd Word
(Bs0=0) (BSO=1)

(

\ _Z/[[/

[Y [v |
512 Lines
(BS1 = 0)
612 Lines
B81=1)

—— 1024 Pixels per Line— ¥4 Bits
per Pixel

Figure 11-21. Display Memory Dimensions for the Example

The decode logic must be capable of more than just selecting a particular bank
of the display memory or system memory during a memory read or write cycle.
It must also be capable of enabling all DRAMs and VRAMs during a
DRAM-refresh cycle, and enabling all VRAMs during a screen-refresh (me-
mory-to-register) cycle. This means that the decode logic must distinguish
DRAM-refresh and screen-refresh cycles from memory access cycles, and
during a refresh cycle broadcast the row and column address strobes to all
devices that require them. The timing of the RF and TR bus status bits has
been designed to make these signals convenient for the design of the decode
logic.

During a read or write cycle, the value of BS2, output with the row address,
determines whether RAS is gated to the display memory or to system memory.
During a DRAM-refresh cycle, the decode logic must broadcast the row-
address strobe to all dynamic RAMs (including the VRAMs). The decode
logic must be able to determine prior to the fall of the row address strobe
whether the cycle that is beginning is a DRAM-refresh cycle, or a memory read
or write cycle. This is the reason the TMS34010 outputs the RF bus status
signal prior to the fall of RAS.

The decode logic uses the value of BS1 to determine whether the top or bot-
tom half of the display memory receives an active row-address strobe during
a memory read or write cycle. The same logic must also be capable of broad-
casting RAS to all VRAMs during either a DRAM-refresh cycle or a register-
transfer cycle. The decode logic therefore monitors the state of the
TMS34010°s TR/QE output prior to the fall of RAS. A low level on TR/QE in-
dicates that the cycle just beginning is a register-transfer cycle, and that RAS
should be broadcast.

11-29

Local Memory Interface Bus - Addressing Mechanisms

While the decode logic uses the value of BSO to determine whether the even
or odd word receives a column-address strobe during a read or write cycle
involving the display memory, the same logic must be capable of broadcasting
CAS to all VRAMs during a screen-refresh cycle. Rather than require an ex-
ternal latch to capture the state of the TR/GE during the fall of RAS, the
TMS34010 outputs the same information a second time in the form of the TR
bus status signal, which is valid prior to and during the fall of CAS.

11-30

Section 12

TMS34010 Instruction Set

This section contains the TMS34010 instruction set (in alphabetical order).
Related subjects, such as addressing modes, are presented first.

Section

12.1 Style and Symbol CONVENLIONSccecocerrriereiierriinrcrereeirecesreeessnaes

12.2 Addressing Modes and Operand FOrmatscccccoceecevvecenverccenrnnnne

12.3 Instruction Set Summary Tablecccoceeinicecnee.

12.4 Arithmetic, Logical, and Compare Instructions

12.5 Move Instructions SUMMAryYcccoceeeveenvinniccnnneen.

12.6 Graphics Instructions SUMMATNYcccocieiiiiinicne e

12.7 Program Control and Context Switching Instructions 12-29

12.8 Shift Instructions
12.9 XY INStructionscccoceevveeecvenreieecceee e,
12.10 Alphabetical Reference of InStructionsccccoecvviviiiccieenicienen, 12-34

12-1

Instruction Set - Style and Symbol Conventions

12.1 Style and Symbol Conventions

Table 12-1 defines symbols and abbreviations that are used throughout this
section; the list following the table describes style conventions used in the
instruction set descriptions. Section 12.2 (page 12-4) defines the symbols
that indicate various addressing modes.

Table 12-1. Instruction Set Symbol and Abbreviation Definitions

Symbol Definition Symbol Definition
Rs Source register Rd Destination register
RsX X half of source register RsY Y half of source register
RdX X half of destination register RdY Y half of destination register
An Register n in register file A Bn Register n in register file B
PC Program counter PC’ PC prime, specifies the address of
Rp Pointer register e the Caront Faetretion)
ST Status Register SP Stack pointer (A15 or B15)
(o} Carry bit N Sign bit
\ Overflow bit Z Zero bit
IE Global interrupt enable bit TOS Top of stack
SAddress Source address DAddress Destination address
SOffset Source offset DOffset Destination offset
LSB Least significant bit MSB Most significant bit
MSW Most significant word LSW Least significant word
W 16-bit immediate value IL 32-bit immediate value
K 5-bit constant cec Condition code for a jump
F Optional field select parameter R Register file select, indicates
for MOVE instructions, which register file (A or B) the
F=0 selects FSO/FEO, and operand registers are in. R=0
F=1 selects FS1/FE1 specifies register file A, R=1

specifies register file B

Program listings, coding examples, filenames, and symbol names are shown
in a special font. Some examples and listings use a bold version of
the special font for emphasis. Here is a sample program listing:

0011 00000210 0001 .field 1, 2
0012 00000212 0003 .field 3, 4
0013 00000215 0006 .field 6, 3
0014 00000220 .even

In syntax descriptions, the font indicates which parts of the syntax must
be entered as shown, and which parts act as place holders indicating the type
of information that should be entered. In addition, square brackets identify
optional parameters.

® The instruction and any part of the instruction that should be entered as
shown are in a bold face. Parameters that describe the type of infor-
mation that should be entered are in jtalics. Here is an example of an
instruction syntax:

12-2

Instruction Set - Style and Symbol Conventions

CVXYL Rs, Rd

CVXYL is an instruction that has two parameters, Rs and Rd Rs and Rd
are abbreviations for source register and destination register, when you
use CVXYL, these parameters must be real register names (such as AQO,
B1, etc.). Applying these rules, a valid CVXYL instruction is CVXYL A0,
A3.

Another example of an instruction syntax is:
PIXBLT B,XY

In this case, B and XY do not specify values or data; they specify the
type of PIXBLT instruction, and the instruction should be entered as
shown: PIXBLT B,XY.

(] Square brackets ([and]) identify an optional parameter. Here's an
example of an instruction that has an optional parameter:

CMPI /W, Rd [, W]

The CMPI instruction has three parameters. The first two parameters,
/W and Rd, indicate a 16-bit value and a destination register; these pa-
rameters are required. The third parameter, W, is optional. As this syntax
shows, if you use the optional third parameter, you must precede it with
a comma.

Each instruction contains an instruction execution field that describes the
actions that occur during instruction execution. These descriptions the fol-
lowing symbols and conventions:

[] The — symbol means becomes the contents of. For example, Rs = PC
means that the contents of the source register become the contents of
the PC; that is, the contents of the source register are copied into the
PC.

The | | symbols indicate an absolute value.

® The : symbol indicates concatenation. For example, Rd:Rd+7 identifies
the concatenation of two consecutive registers, such as A0 and A1.

Numeric constants such as hexadecimal, octal, and binary numbers are
identified by a letter suffix. Valid suffixes include:

® b or B (binary)
{ q or Q (octal)
L] h or H (hexadecimal)

Decimal constants have no suffix. Note that all constants must start with a
numeral; for example, ABCDh is an illegal constant; OABCDh is the legal form.

12-3

Instruction Set - Addressing Modes

12.2 Addressing Modes and Operand Formats

12.21

12-4

The TMS34010 instruction set supports eight addressing modes. Most in-
structions have register-direct operands or a combination of register-direct and
immediate operands; however, the move and graphics instructions use more
complex combinations of operands. This section discusses the TMS34010
addressing modes, and defines the symbols used in instruction syntax to in-
dicate an addressing mode.

Immediate Values and Constants

An instruction syntax may use one of these symbols to indicate an immediate
source operand:

IW is a 16-bit (short) signed immediate vaiue.
IL is a 32-bit (long) signed immediate value.
K is a b-bit constant.

Instructions that have immediate source operands have register-direct desti-
nation operands. Many instructions that have an immediate value can use ei-
ther a short or a long value.

Figure 12-1 illustrates a MOVI (move immediate) instruction whose first op-
erand is a 32-bit immediate value. The syntax for this MOV is:

MOVI /L, Rd[L]
The instruction in Figure 12-1 is:
MOVI OFCOh, A2, L

Figure 12-1 shows the object code (at address V) in memory and the effect
of the instruction on the CPU registers. The value OFCOh is copied into reg-
ister A2 as a zero-extended 32-bit value. (Note that this is a 2-word in-
struction; the next instruction to be executed is at address N=2.)

Memory CPU Registers
0 31 o
15 e

r— | |A0

| Al
a2

~[09E2h :

MOVI OFCOON, A2,I.{ I |

N+2 next Al4

instruction BO

7 .

SN B14
ST
sP
N PC PC'=N+2

Figu‘re 12-1. An Example of Immediate Addressing

Instruction Set - Addressing Modes

12.2.2 Absolute Addresses

An instruction syntax may use one of these symbols to indicate an absolute
operand:

@SAddress is a source address that contains the source data.
@DAddress is a destination address.

Note that the @ character is entered as part of the operand (this distinguishes
it from an immediate operand).

Figure 12-2 illustrates a MOVB (move byte) instruction that has an absolute
operand (the first parameter is a 32-bit source address). The syntax for this
MOVB is:

MOVB @SAddress, Rd
The instruction in Figure 12-2 is:
MOVB @RoutineA, Al3

Figure 12-2 shows the object code (at address V) in memory and the effect
of the instruction on the CPU registers. @RoutineA is the address of a byte;
this MOVB instruction copies the byte at address Routinea into register A13.
(Note that this is a 3-word instruction; the next instruction to be executed is
at address N=3.)

Memory CPU Registers
31 0
15 ~TTTSG 0 jA0
.--—’/ Ny }
N O07EDh)
MOVB@RoutineA, m{ N+ 1| RoutineA (MSW) 00000 ::i
N+2 RoutineA (LSW) B0
N+3 next N
instruction | :
B14
RoutineA 55h g;
e N PC PC'=N+3
-
e

Figure 12-2. An Example of Absolute Addressing

12-5

Instruction Set - Addressing Modes

12.2.3 Register-Direct Operands

12-6

An instruction syntax may use one of these symbols to indicate a register-
direct operand:

Rs is a source register that contains the source data.
Rd is a destination register that will